Starlink Mini as emergency comms platform

Welcome to another post. This one covers potential uses for the Starlink Mini in an emergency communications, gird down, or other scenario where Internet connectivity is required but unavailable using other means. There are a number of use-cases for it and there are also potential limitations of the device and its use during an emergency. Below is a photo of a Starlink Mini with an aftermarket protective case mounted to ferromagnetic plates (12ga Simpson strong ties) that are bolted to an aluminum roof rack on a vehicle. The screw hole pattern on the strong ties allows easy mounting to the roof rack with its supplied hardware.

What is a Starlink Mini?

The Starlink Mini is a standalone satellite terminal that provides high speed Internet with a clear view of the sky and active service. There are a number of Starlink devices created for various uses. The smallest and most portable offering is the Starlink Mini. It can provide advertised speeds of up to 100Mbps in ideal conditions and the cheapest roam plan for the mini comes with 50GB of data per month at a cost of $50 in the US as of this writing. Service can be paused at the end of the current billing cycle without cost to the user if it’s not needed and can be reactivated at any time. The terminal itself also costs about $450 and is currently on sale in the US. The Starlink Mini doesn’t require an external router like its predecessors and contains its own wifi router and a wired ethernet port. The device is configured and managed with a smartphone app and is designed to be fairly resilient against poor weather conditions. It includes a 15m power cable with 2.1×5.5mm barrel connectors, AC adapter that provides the unit 30v DC, a kick stand, and mast/pipe mounting kit. The Starlink Mini can also be used on a vehicle that’s in motion. The specifications for the unit can be found here.

How can it be used?

There are a number of potential uses:

  • A standard Internet connection that can do everything a regular Internet connection can do: e-mail, social media, chat/voice/video messaging, etc.
  • Using the device to facilitate wifi calling with standard cell phones. This is useful when there’s no cell signal and you need to contact emergency services or call for a tow, etc.
  • Use for Internet-based navigation services such as Google Maps to get live updates on road closures, etc. in areas where there’s no cell service.
  • An Internet gateway for AREDN to provide other users on the mesh with Internet connectivity when other Internet connectivity is unavailable to the mesh or is otherwise saturated.
  • Integration with existing disaster response tools such as Winlink. The Starlink can be used as an Internet gateway for Winlink telnet transport, and its high bandwidth connection accelerate transfers that might be slower using RF Winlink technologies such as packet or VARA. Using a Starlink terminal also removes the need for a dedicated Windows host to continuously run a VARA software modem.
  • Use as an alternative to AREDN when line-of sight to another AREDN node isn’t possible or when adjacent nodes are offline.
  • APRS IGate Internet connection.
  • A backup Internet connection when power is down or there is an Internet outage.

Things it can’t do:

  • Replace GMRS or UHF/VHF communications. This is an Internet connection and doesn’t replace local comms and nets unless every team has one and reliable power for it. Even then it’s not sufficiently portable to communicate with individual teams when cell service is down.
  • Natively connect to AREDN. A router and some configuration will be required to connect the Starlink’s ethernet port to an AREDN WAN port.
  • Work well without a clear view of the sky, active service, and available bandwidth to communicate with satellites. Obstructions like trees, buildings, etc. will prevent it from working, and too many users or too few available satellites for a given area can negatively impact functionality, bandwidth and latency.

Real life use

I’ve only had the Starlink Mini for a couple months as of the time of writing but have already used it in two situations that weren’t testing or experimentation.

The first real use of the Starlink I had was a long road trip in poor weather (rain, snow, dense fog, high winds) where cell coverage was spotty at various points during the 5 hour drive. I was able to use the Internet connection to maintain contact with others, facilitate navigation, and stream music. On the way back there was an accident that backed up the interstate I was on for miles in both directions, and created hours-long delays. Despite not having cell coverage before I reached the stopped traffic I was able to avoid the wreck because Google Maps got a real-time alert and routed me around the accident using an alternate route automatically.

The second real use of the Starlink Mini was allowing me to continue working during an Internet outage. I was able to work normally including video calls and meetings after setting the unit up outside and connecting it to my network in a box (boost converter and router) that provided strong wifi coverage in the house. Even if I had lost Internet connectivity and power I could have run the network-in-a-box and Starlink on battery. See photos below of the network in a box.

Adapting the unit to work without AC power

The first problem to solve with the unit is its reliance on AC power. You can connect the unit to an inverter or AC generator for power, but using a generator requires a steady supply of fuel and an AC inverter consumes a lot of power that’s used to boost your 12v DC batteries to 120v AC only to be downconverted to 30v DC in the end making it less efficient than a single step of boost conversion. I chose a boost converter that boosts the power from 12v DC to 24 DC and can provide up to 10A of current. While some power is lost in the boosting process this is much more efficient than a large voltage boost and AC conversion followed by a second downconversion to 30v DC. The 24v boost converter and that works with the 15m DC cable included with the kit.

It’s worth noting that the power cable is a small and there’s too much voltage drop over the length of the cable with 12v to run the unit as the required amperage at 12v is too high for the cable gauge, and the voltage is too low to power the unit. The higher voltage provided by the boost converter requires less amperage to provide the same wattage to the Starlink. Ohm’s law (Pwatts = Iamps * Vvolts rewritten as I = P / V using variable isolation) tells us that at a reference power level of 25w and 12v the small gauge cable has to handle about 2.1A over 15 meters, and that doesn’t consider voltage drop which prevents the device from functioning properly [25w / 12v = ~2.1A]. The same reference power level (also excluding voltage drop) at 24v requires the wire to handle about 1.1A [25w / 24v = ~1.1A]. Shorter cables such as the 5m aftermarket cables can run the unit on 12v but it does get fairly warm running on that voltage even with the shorter cable length and I wouldn’t recommend that especially in a warm environment as it may damage the Starlink Mini.

Power connection block diagrams for stock configuration and my base DC configuration

Exploded view of connections made in the base DC setup with the optional ethernet cable represented. From left to right, top to bottom is the Starlink Mini upside down showing the connection points, an ethernet cable with nothing connected to it, the DC power cable, 12-24v boost converter, and battery. It’s worth noting that the boost converter pictured here is for another project and is much larger physically and in terms of power capacity (20A) than the one used by me to run the device (10A) in the field and is there as an example.

Network in a box

The network in a box is my solution for making the components that run the Starlink from a battery more compact, portable, and protected from dust and rain when in transit. Having all that set up ahead of time reduces the amount of time needed to fumble around making connections under duress or in adverse conditions and reduces the likelihood of human error causing damage to various components given the differences in voltage between the Starlink Mini and all other components. After dust and rain caps are removed from the ports it is no longer protected from the elements. There is a section that details the network in a box’s wiring, ports, etc. near the bottom of the post. The picture blow shows the system connected to power the Starlink, connect ethernet to the router included in the box, and has the optional ethernet connection to the laptop hooked up. Another advantage of having a separate network in a box is that the router running OpenWRT is more configurable than the Starlink Mini itself and supports features like firewalls and VLANs. These features can be important when integrating the Internet connection with an AREDN mesh node.

Optimizations, accessories, and considerations

Power consumption and snow melting capabilities

The unit tends to use about 25w of power at the unit (not including power used boosting the voltage) while running without the snow melt system running. I’ve intentionally disabled the snow melt functionality to prevent unwanted spikes in power usage. Most scenarios I’ll use the unit in involve me being outside or near the unit so clearing snow from the unit by hand shouldn’t be an issue. With the additional thickness of the protective polycarbonate layer and small air gap between the two I suspect the snow melting functionality would be less effective anyway.

Cable kits and cabling considerations

I have two power cables for the unit – one aftermarket 5m cable and the 15m cable included with the kit. The 5m cable is more efficient and has a lower voltage drop than the 15m one and can be used when the unit doesn’t need to be far from me to get a clear view of the sky. It’s also nice to deal with only 5m of cable unless you actually need the 15m length to fit your situation. These power cables are 2.1 x 5.5mm barrel connectors with a center pin positive configuration with weather resistant boots on both ends. I did splice powerpole connectors inline with the Starlink DC cable so I can connect directly to a 24v boost converter that has powerpole ends installed if necessary. It removes the need for multiple adapters in some situations, but allows you to connect to the native barrel connector in others.

In order to connect the unit to AREDN or any other network you might want to run that can’t run as a wifi client you’ll have to purchase a special weather hardened ethernet cable that has a boot that seals the port on the unit when the plug is removed from the port. I have an aftermarket 5m cable to match the power cable’s length and purchased a 15m cable from the Starlink website for about $30. This pairing of cables enables me to optionally connect the unit to a router or switch and can allow me to move the wifi access or cabled access closer to my work area which might be necessary if the position of the Starlink unit prevents a reliable wifi connection.

The official and aftermarket Starlink ethernet cables I purchased have proprietary RJ45 ends with a weather resistant boot that protects the jack from water and dust ingress. I ended up cutting one end off of each ethernet cable and installing a standard RJ45 end for compatibility with standard ethernet jacks found on most consumer routers and switches.

Protecting the unit from adverse conditions and adding additional mounting capabilities

While it’s not explicitly necessary to deploy the Starlink Mini physically hardening the unit with an aftermarket case could also be useful in some situations and has some advantages, but has costs in terms of additional bulk, weight, and safety considerations in my configuration. The surface of the satellite terminal that faces the sky can be scratched, gouged, or otherwise damaged by branches or sharp objects. Third party manufacturers make cases for the unit that allow it to operate in rougher conditions than it was designed to and add some advantageous security properties along with additional mounting options.

The case I purchased from Striker Fabrication has a handle, aluminum baseplate, and polycarbonate lid for the top of the unit. This allows me to mount it to my vehicle when offroading or on the highway as branches might sweep the unit or debris may strike it resulting in damage to the sky-facing surface. I added four 65 pound magnets with M6 threaded posts and lock washers to the corners of the unit that allow me to mount it to any magnetic surface such as a vehicle roof or hood. The holes I used to mount the magnets can also be used to bolt the case to any other permanent or semipermanent mount point using M6 screws. The aluminum plate under the case is compatible with the mounts that come with the Starlink Mini so it can be placed on a pole or on the ground with the included kickstand without needing to be removed from the case.

I can also loop coated wire rope through the aluminum and roof rack and secure it with a pad lock to ensure that a branch strike won’t sweep the unit off the roof of my vehicle entirely while in motion. It also acts as a theft deterrent for when the vehicle is unattended. I have two other pieces of coated wire rope that are 2.5 feet short of the full length of the power and ethernet cables to make theft of the deployed unit more difficult and to provide strain relief if the cable is pulled or tripped on when deployed on the ground. If the coated wire rope is anchored to a secure point on the terminating end a trip or pull on the cable is less likely to result in the power and network cables from being ripped from the Starlink Mini or attached power supply and network equipment. A pulled network or power cable can damage other equipment such as batteries, network hardware, or laptops by pulling them over or off of elevated surfaces. The Starlink unit will hopefully be the part that is harmlessly dragged by the coated wire rope due to its relative light weight and the other end of the cable being secured. The choice of coated wire rope was made because of its relative strength and light weight. The coating on the wire rope prevents scratches on painted surfaces, allows it to slip past snag points more easily when pulled, and aids in corrosion resistance.

Magnet safety warning: The four 65 pound magnetic feet provide a total of 260lbs magnetic pulling force. These will unexpectedly stick to metallic objects, pick up sharp bits of metallic grit and filings that can damage paint, and they will stick to metallic objects in your pockets or in your environment while being carried. Be aware of your surroundings and exercise caution. The magnetic mounts can also cause the case to crush your fingers when the case sticks to a metallic surface. Don’t ask me how I know. It’s worth noting that with this configuration it can be difficult to remove the device from a surface that it’s stuck to. Exercise caution when using powerful magnets – especially when handling the unit, sticking it to a surface, or removing it from something it’s stuck to. When it comes loose it does so quickly and you can unintentionally throw the unit when it releases. Again, don’t ask me how I know.

Factors effecting operation and Internet bandwidth

Internet connection speeds vary due to a number of factors including the location of the unit and whether or not it has a clear view of the sky according to its specifications, the number of users connecting to the satellites the unit is also using, and wifi connection strength.

Full kit photos

The following photos show the full kit. Most components of this kit are fully optional. The only real requirement to run the unit is the 12-24v boost converter and associated connections along with an activated Starlink Mini and a clear view of the sky. The picture shows the 15m cables power and network cables that are zip tied together every 18 or so inches since they’re almost always used by me at the same time, but the ethernet end doesn’t have to be connected if there’s a reason not to. The 5m cables are separate because I can usually use the Starlink Mini’s wifi at close range and handling more cable isn’t usually necessary but I have the option to deploy the second cable if needed. This kit includes aftermarket water + dust resistant caps on the Starlink end of all cables to protect the cables from water and dust during deployment and breaking down in adverse conditions. The bottom row on the left shows the AC power adapter, pole mount, and kickstand when opened, but not attached to the bottom of the unit. The pole mount and kick stand snap into the underside near the network and power cable ports and the enclosure is fully compatible with the mounts as well.

Base configuration and added router / AREDN node

The following block diagrams depict a basic DC power setup with optional solar and battery charge controller as well as a configuration that connects the Starlink Mini to a router or AREDN node. Since AREDN nodes are functionally routers the connection principals are basically the same. See the above photo of the network in a box setup to see what the wiring looks like with a connected router.

Network in a box detail and photos

Exterior detail

The gallery below shows the exterior of the enclosure including ports and power controls. As noted previously this unit has port covers designed to protect the system from dust and moisture in transit. Once the ports are opened the unit is vulnerable to dust and water ingress so it requires some care after being deployed. The bottom of the unit has non-slip pads stuck to it because the enclosure’s bottom is slippery and there is a chance the screws that hold the boost converter could scratch surfaces so those non-slip pads also provide a degree of separation between the screws and the surface the unit is sitting on.

Power is provided by a single powerpole connector wired in a right-hand-red configuration, and power to various components is controlled by two pushbutton switches with LED power indicator rings. These physical switches are installed for easy control of loads and to prevent parasitic power draw when components shouldn’t be running.

Interior detail

The inside of the enclosure is shown below. The major components are a DC 12-24v boost converter, a Mikrotik hAP2 router running OpenWRT, an open source router firmware, switches, fuses, power wiring, and network connections. The unit includes a bag of spare 1A and 3A fuses that are stored inside the case for field repairs. The router is connected to the bottom of the enclosure using velcro so it can be removed as needed. All power connections in the case are also powerpole so in the event some component fails and needs to be replaced, bypassed, or reused elsewhere on the fly there’s minimal effort, tools, and wire splicing required to make changes.

Starlink Mini network engineering details

The Starlink unit is configured from the mobile app, but the base networking characteristics of the unit are as follows:

  • The Starlink Mini has a built-in router and dual-band wifi access point as well as a weather-hardened proprietary ethernet connector that supports provides 10/100/1000Mbps ethernet. This connector is a modified RJ45 jack wired using the EIA 568B standard. The official Starlink ethernet cable is outdoor rated Cat6 shielded twisted pair.
  • Starlink service provides native IPv4 and IPv6 capability.
  • There are 2.4 and 5Ghz wifi networks generated by the unit itself and these can be disabled or split into different SSID based on frequency if required for certain devices that have issues selecting the correct network.
  • The unit is configured to hand out IPv4 and IPv6 addresses using a local DHCP server runing on the Starlink Mini when it’s in the default operating mode (not in transparent bridge mode).
  • The default IPv4 address space is 192.168.1.0/24 and the built-in router uses 192.168.1.1 for its address and the default gateway.
  • I don’t think there is any web UI to configure the router on the Starlink Mini. This isn’t the case with other Starlink products I’ve worked on. The mobile app or Starlink website is required to configure the Starlink Mini.
  • Access to GPS location, telemetry data, and configuration endpoints are available via gRPC endpoints hosted on the Starlink Mini unit. These gRPC endpoints may also be the mechanism that the app uses to configure the device. See Sparky8512’s project for example code that interacts with the gRPC endpoints.
  • Unlike its predecessors it can’t be powered using power over ethernet. The DC power cable is required for the Starlink Mini to power up.
  • The unit can be set up in transparent bridge mode and any wired device connected to it is required to run its own DHCP client to get a WAN address from the upstream Starlink network. In order to switch back from transparent bridge mode the unit will have to be factory reset using the reset button on the under side of the unit.
  • All wired and wifi hosts connected to the unit are dropped onto the same subnet and can communicate with each other directly. There doesn’t appear to be any client separation inside the LAN.
  • The advertised WAN bandwidth is up to 100Mbps but I and others have seen speeds in excess of 100Mbps in certain locations and conditions.

Working ISS (01/23/2022)

This post is a bit of a quickie, but it covers an attempt to some of the basics about working ISS’ voice repeater and APRS digipeater. During this attempt to work ISS I wasn’t able to make any voice contacts, but I started with the following:

  • An Android phone running ISS Detector Pro
  • 5″ piece duct tape
  • Yaesu FT3DR
  • An Arrow handheld dual band 2m/70cm satellite antenna with built-in duplexer

Theory

As ISS or any satellite orbits earth in a non-geostationary orbit you’re likely to eventually have a certain number of passes over your location, depending on how the satellite is orbiting. You can use software to predict orbits, and therefore you can be ready when the satellite passes overhead. Ideally you’ll have the transponder frequencies of the satellite you’re trying to reach pre-programmed into your radio along with some doppler-shifted frequencies to try to reach the satellite as it approaches and departs. I didn’t do that, but have had decent luck without the doppler-shifted frequencies. Passes typically last minutes. What’s happening is that a lot of satellites have an uplink (ground -> space) and downlink (space-ground) frequency. Your radio must be able to transmit on one and listen to the other to make contacts. There are some cases where that’s not necessary such as working satellites with APRS digipeaters, or just receiving signals.

The attempt

I used the ISS detector pro app to find a longer pass (this one was about 6 minutes long). Before the pass I set my antenna up, connected it to my radio, and made sure it was in working order. After that I taped the phone to the beam of the antenna between the first 2m elements where it would fit using a piece of duct tape folded in on itself. Taping the phone to the boom enables me to aim the antenna using the app (screenshot later). I also configured the frequencies for the APRS digipeater on ISS, the crew communication uplink and downlink frequencies, and the FM repeater frequencies. As a side note sometimes astronauts, who are also licensed ham radio operators, will man the radios and talk with folks on the ground. In addition to programming frequencies you need to also program your APRS radio to use the digipeater path ARISS, otherwise the digipeater won’t send your packets back down to other stations.

Yaesu FT3D radio's APRS path configured to be "ARISS".
Yaesu FT3DR digi path set to ARISS or ISS.

Now it’s time for action! There’s a very narrow window to hit the ISS, so there’s a need to be quick and prepared. I went out in the street near my house a few minutes early with a clear-ish view of the sky and aimed the antenna at the satellite using the app. A screenshot below shows what the aiming screen looks like. The yellow circle is the direction the top of your phone is pointing and that should be aligned with the satellite on its track, the blue line with dots. The center of the screen is up and the and the outer ring is down. As the satellite passed I just aimed the antenna with the aid of the phone and tried to use the repeater. I didn’t hear anyone, but was able to switch to APRS and sent a beacon. I saw that the packet I sent was digipeated by ISS! Following that I checked the ARISS page and saw my call sign! You can also check https://aprs.fi and see your location as well as the path by which your packet arrived. The first hop for my position report was the ISS.

aprs.fi screenshot showing a path via NA1SS
An aprs.fi screenshot showing a path digipeated by NA1SS before going to APRS-IS via KM6YLW-2.

Camping in the Tillamook State Forest (1/21-23/2022)

It’s been a while and this will be a big post! My partner and I were able to go camping over the weekend, and if you’ve read any of my blog posts you won’t be surprised that I took the opportunity to practice some comms and off grid operating. I wanted to work HF, do some shortwave listening, and see if I could do any UHF/VHF communications. Additionally I wanted to run off of the 100AH battery box for a couple days to see how well it held up under constant use. This is also the first camping trip I brought the speaker stand antenna mast setup on.

On the way out I ran APRS with the Kenwood TM-D710G and the COMET-NCG CA-2X4SR antenna that mounts on the hood of the 4Runner. I noticed that on the way out that I had APRS coverage nearly the whole way out.

The first night we arrived late so I did a bit of SWL. I mostly got Radio Havana Cuba, Radio Nikkei, a distant station broadcasting in Mandarin, and Radio New Zealand International.

The next day I set the antenna up following a fun walk in the woods below the camp site. Most of my work on HF was done using the usual Endfedz Trail friendly 10/20/40m antenna. I strung it between the 4Runner and my portable antenna mast. I also added a 6m end fed dipole to the setup to see if I could reach Kevin, K7AJK from my camp site on the Lab599 TX-500. We had no luck. I wasn’t actually able to make any voice contacts on 20m with this setup even running at 10W, but there was a contest on the band so it was both congested and I suspect folks were running at fairly high power levels to make contacts. As you’ll be able to see from photographs I did a little hack with a stick I found to push the antenna higher off the ground on the truck side. It was especially helpful in preventing the hatch back from striking the antenna.

View of an antenna mast guyed to the ground and a line with an antenna running to a SUV in the background
Guyed antenna mast with two antennas added
View of an SUV with a piece of wood lashed to the roof rack holding some paracord off of the top of the vehicle.
Found piece of wood used to push the antenna higher off of the roof of the 4Runner
An antenna tied to paracord running from the upper-right corner of the photo to a mast several feet away on the edge of a hill. The transformer for the antenna is visible with feed line hanging down. Forest in the background.
The Trail Friendly Endfedz is strung along some paracord to prevent damage to the antenna if the mast blew over.

After a few hours of having no success running phone I decided to switch to packet. Moving the radio into the vehicle reduced the SWR and allowed me to run the entire setup from the 100AH battery since I had used the 4.5AH battery quite a bit for SWL already. I had also been simultaneously been running my 2m rig and APRSDroid on the tablet connected via Bluetooth to the mobile radio with a Mobilinkd TNC3+. I was able to send a number of text messages back and forth between friends using SMSGTE, which was nice given the complete lack of cell service. At this point I was still using the antenna on the truck.

A Raspberry Pi connected with a Lab599 TX-500 radio via two cables sitting in the back of a 4Runner.
Lab599 TX-500 connected to the off grid Raspberry Pi
A tablet sitting on a metal camping table running the JS8Call application.
Tablet running JS8Call
A toolbox with power connections running from it sitting in the front seat of a vehicle.
100AH battery box connected to the Kenwood TM-D710GA in the vehicle, the Lab599 TX-500, and some lighting.

After quite some time operating on digital I decided to test some configuration changes I made to js8cli to increase the accuracy of maidenhead coordinates I was submitting to APRS-IS via Internet-connected stations running JS8Call. I had some pretty good luck as my position was accurately reported.

A photograph of the screen of a tablet showing the JS8Call application running. A callsign, timestamp, and 10-digit maidenhead coordinate are displayed prominently in the photo along with a screen showing contacts with other stations.
JS8Call screen shot showing a 5-level maidenhead position set via js8cli running an daemon mode
A screenshot of the website aprs.fi showing a Google satellite map with a rectangular marker for K7JLX placed in a clearing.
My position as displayed on aprs.fi

Apart from all the fun I had on HF, and walking around the forest with my HT (where I was reliably digipeated at 5w) I also figured I’d try to see if I could hit some of the repeaters in the Portland area, so I swapped the vertical antenna on the vehicle for my collapsable J-pole and speaker stand antenna mast. Much to my surprise I was actually able to get into the repeaters in the Portland area at 5w, but it was a bit sketchy as sometimes they wouldn’t key up. Apart form that I could get a bunch of APRS stations and digipeaters as well as some folks on the 2m calling frequency. I actually ended up having much better luck on 2m than on HF this time around.

The head unit of a Kenwood TM-D710GA radio placed on the dash of a vehicle.
Kenwood TM-D710GA on the dash of the 4Runner
A 4Runner with an antenna mast tied to the front bumper and connected to the vehicle with feedline. There's a camping table and chairs to one side and in the background are trees, a valley and a mountain on the other side of the valley.
The 4Runner antenna hood antenna swapped for an elevated J-Pole on the speaker stand mast.
Close-up of paracord tying the the antenna mast to steel tubing on an offroading bumper.
Using paracord to lash the antenna to the bumper of the truck

As you might have noticed from the pictures above I ended up moving the antenna because winds were getting higher and I was afraid the antenna might move side-to-side on the bumper’s tubing. I ended up shifting it toward the driver’s side where I could secure it to both the tube running horizontally and to the spot where the tube split, meaning the mast wouldn’t shift from side to size because it was secured with the paracord on both axes. since the antenna mount on the vehicle uses the same connector as most of my coax and the J-pole I was able to just connect the J-pole directly to the existing cabling in the 4Runner. Easy!

For the entire trip apart from doing some SWL with the TX-599 on its 4.5AH battery away from the truck and by the fire ring I ran all the lighting and radios from the 100AH battery box. We charged the tablet, my partner’s phone, and my phone from the battery box as well. We only drew down to 96% in two days. One day had a lot of heavy radio usage as well so that’s all a good sign.


Yellow witch's butter growing from the top of a tree stump with diamond cut patterns.

Some witch’s butter we found on a stump near our camp site

Using the portable LiFePO4 battery banks in the Gifford Pinchot National Forest

This won’t really be a post about doing a lot of operating. It’s mostly about powering and recharging stuff. The long story short of operating from the specific site we were at is that I didn’t make any contacts apart from another station on JS8Call that heard one of my heartbeats. I wasn’t in a good position to be heard, but I could hear a lot of other stations on 40m throughout the afternoon and evening. I was also able to hear Radio Havana and what I suspect might have been Zambia NBC Radio 1 for a few minutes.

I was able to recharge the Bioenno 4.5Ah battery in an hour or so as we broke camp and packed the vehicle. I’d been using that radio the previous day and listening to shortwave stations the whole night. A solid hour of charging at 1.1A using the BuddiPole PowerMini on a single GoalZero Nomad 20 solar panel was enough to replentish the battery.

The 100Ah battery was easily charged in about 45 minutes. We’d only drawn about 3.5Ah from the battery running lights, charging a phone, and a portable projector. The panel in use here is a Bioenno 100W folding panel and from the VictronConnect application screenshot it’s charging at about 4.5A. The back view shows how the solar panel is connected to the charging unit and the battery. This is the first time I’ve used the West Mountain Radio Epic PWRGate to charge the 100Ah battery. I’m hoping to use it for charging from a vehicle alternator, an existing DC power supply, or solar panel. I’m also hoping to add a charger like this to the box along with a temperature probe to ensure the battery isn’t charged when it’s too hot or cold. The Relion RB100 has a minimum charging temperature of -4F.

This a detailed view of the West Mountain Radio Epic PWRGate. The green LED indicates it has good solar charging voltage, and the blue LED that was slowly pulsing which indicated that the battery was being bulk charged by the solar panel. The PWRGate is programmed with the specific battery chemistry settings for LiFePO4 batteries and is current limited at 6A for some of the other batteries I charge with this setup.

Operating while camping on Mt. Hood 7/31/2021

Hello all, it’s about time I wrote a post about my camping trip my partner and I took a couple weeks ago. I took my trusty Lab599 TX-500 kit, a couple 20W GoalZero Nomad solar panels, headset, and table/chair combo up camping with our “new” 4×4. I wanted to do some HF QRP and some handheld UHF/VHF operation while I was out. I brought some of the same portable furniture that I used at the beach last post since it worked out so well.

The view was pretty sweet for this one. The smoke from the wildfires made everything a bit more hazy but pretty great none-the-less.

View of a heavily forested valley from a high vantage point. In the foreground a radio is sitting on a gray metal camping table.
View while operating

While operating HF I made a number of contacts, and the solar panels kept the 4.5Ah Bioenno LiFePO4 battery built into the HF QRP radio kit charged the whole day. The first HF contact I made was with Stefan, AF6SA who was working POTA in Eldorado Natoinal Forest (K-4455). His signal was 5/6 on at about 450 miles away on 20m. I also made a contact with VA3AAA, Stanley in Ontario, Canada. I was pretty excited to reach Ontario with a low power radio. That contact was also logged on 20m. I also made a contact with the K0GQ radio club in MO on 20m. All of these contacts were made between 5 and 10w using the Trail-friendly EndFedz EFT-10/20/40 antenna strung between a couple trees about 50′ apart and about 25′ above the ground.

I switched radios and bands to see if I could get into some of the repeaters in the Portland area (I could) with my Yaesu FT3DR and a Signal Stick antenna. I ended up on 2m and caught two hams on 146.520Mhz doing a SOTA activation: K7AHR and K7IW. I think they were on Lookout Mountain, but I can’t remember and didn’t properly log it. I was running 5W for those contacts.

Tour of the radio setup at the camp site

Operating naked on the beach!

Howdy and welcome back! I spent the day at Rooster Rock, a clothing-optional beach on the banks of the Sandy River in Oregon. Since I burn easily I got a cheap tent from Target to get very sandy and to keep me and my gear safe from the sun! As a bonus this specific tent actually has a pass through for cables in the front corner to the left of the door which is pretty great for running solar panel connectors and feed line. I didn’t have any successful contacts, but that’s not surprising given the difficulties I had tuning the Superantenna. I couldn’t manage to get a decent SWR on the QRP radio. The real point of the post is about portable shelter options that can keep you out an entire day even when you’re literally naked. This was able to keep me and the gear cool enough to keep going. Folding a corner of the tent up allowed the interior mesh to breathe away from the sun. In the picture below you can see through the door that the rain fly has been lifted.

A tent on a beach with some small trees and brush in the background. Two small solar panels rest next to the tent. An antenna is set up behind the tent in the brush.

We weren’t able to get the best spot but at least we got something out of the way on a path and had enough space to set the tent up. I had enough clear space to keep the solar panels going all day as well. They kept the battery kept everything charged and running. I tried to see if I could make any UHF/VHF contacts but I was in a gorge so I had very limited luck. I’m sure you’re just as shocked as I am. I then tuned the Superantenna as best I could for 20m and tried to make some contacts but I wasn’t getting out. I heard a bunch of stations on the east coast and in the midwest including participating in a New England radio event or QSO party for the 4th of July weekend. I wasn’t able to get out to anyone though. In addition to those stations I could also hear but not reach Paolo IK5SRF in Tuscany, Italy. Paolo had quite the pileup going.

Interior view of a tent front the door showing a small folding table, three-legged folding camp chair and equipment resting against the walls of the tent. Through the mesh you can see the river.

A view of the radio setup, the table, and chair. This three-legged chair is actually pretty comfortable.

A view of the top of a metal folding table with a radio, water bottle, sunscreen, a pen, and notepad. Brush and beach sand is visible through a mesh panel.

My conspicuously-empty log book with only notes and the radio.

At the end of the day breaking the tent down was pretty easy. We were able to tear down the entire site and radio station in about an hour, have it loaded into the beach wagon and off we were. Much of that time was as usual rolling feed line so it’s not a pain to unroll later.

Coping with the heat wave

Hello all, while this isn’t actually a post about amateur radio I wanted to post about how we (my partner and I) decided to deal with the June 2021 heatwave in the Pacific Northwest. While this isn’t directly related to ham radio I think it’s worth discussing as the temperatures in this region don’t typically reach the levels they were at and most homes and people aren’t prepared to cope with those temperatures. Some folks will probably laugh at this post and the situation in its entirety, but you have to remember that homes, businesses, animals, and people in what is typically a fairly temperate climate aren’t used to these sorts of temperature spikes. Some of us will mostly be uncomfortable and maybe inconvenienced but for others this is a deadly situation. There are large numbers of unhoused folks sleeping rough and stuck outdoors during this time. It is easy to die of exposure in situations like this even in a city. In nature you might be better or worse off depending on where you are. When operating in the field it’s important to keep yourself and your equipment cool, and I don’t think this is the last time we will have unseasonably hot weather. Next time it could be during another disaster or trigger secondary problems like power outages. This post is mostly about optimizing a solution for a problem with cheap and easily available materials to decrease misery and help alleviate a situation that could lead to an emergency.

One obvious issue with the house we live in during this specific situation is that it has a very large single-paned south-facing window, which definitely heats the house up during the summer. We were fortunate enough to have a single window-mounted AC unit for the whole house but it was only able to keep the house in the high 80s to low 90s which is definitely better than 110+ degrees, but I wasn’t sure if the power grid would hold up under additional load and the heat itself. My partner and I decided we’d take some steps to cool the house further for our comfort and our dog’s safety. The most obvious thing we could do to limit solar gain would be to cover windows that we could with blankets, etc. which helped, but we didn’t have a big enough blanket to cover the window. I wanted to actually keep the heat outside rather than heating a blanket that was already on the inside of the house and having it radiate that heat into the living space. A cheap reflective shield with an air gap between the shield and the house would be a possible solution to the problem.

Problems to solve:

  • Keeping as much heat out of the house as possible
  • Shielding a large area
  • Keeping it simple
  • Passive cooling (a plus)
  • Temporary mounting
  • Not wanting to put tape on paint
  • Keeping it cheap
View of the outside of a house with a mylar blanket suspended in front of a large window supported by paracord. There are lots of plants.
Hastily constructed mylar “heat shield”

A quick trip to the grocery store yielded the following materials: a roll of duct tape, 50′ of paracord, and 4 mylar blankets (we only needed 3 it turns out). The entire solution cost less than $20, some moderate burns, and sweat. We taped the edges of the mylar blankets on both sides to hold them together and taped across the gap intentionally leaving holes that would be left to ensure the wind loading was lower since this was in part just held up by tape. Our first attempt at the solution was to run paracord from the fence to the gutter, but it required too much paracord and the angle the mylar blanket would be at would be less-than-optimal so I ran the paracord from the ground and weighed the ground ends and center point down with rocks. The end of the paracord attached to the gutter was run between the gutter nails and didn’t require tying or taping. I did, however, end up taping the corner of the mylar blanket to the inside of the rain gutter because there wasn’t a suitable anchor point for paracord near the corner of the house that I wanted to cover. We weighed down one corner with some rocks and were back inside within 35 minutes. Ouch note: ladders get hot in intense sun and gloves are a good idea.

The photos I’m including were taken after day 2. We had to go back out and shore parts of the heat shield up because some of the spots I taped to the paracord slid down. To combat that I just did extra-long wraps of duct tape around the paracord and attached it to the edges of the mylar blankets. I also taped the inside of the shield to the paracord at the bottom to prevent the heat shield from riding up the paracord. The end of the mylar blanket that was weighed down by rocks also tore in the wind/breeze so we coated the corner we stuck the rocks in with duct tape as a protective pad for the mylar. All the photos are this setup are shown below. The air gap between the window and mylar also served as a nice passive cooler. As the breeze and wind blew between the mylar and window it carried some of the heat away. After installing the mylar heat shield the temperature in the house dropped by 10-15 degrees over the next 30 minutes!

View from the inside of the window showing hanging plants, art work, and the mylar heat shield. Paracord is duct taped to the blakent to keep it off of the window and in position.
View of the back of the heat shield through the window.
One corner of a mylar blanket duct taped to the inside of a rain gutter. The tape is coming off the gutter in spots and the blanket is precariously attached.
Duct taped corner two days after installation. This is the weakest part of the installation.
Paracord tied around two rocks being used as a center point anchor with two "wings" going two directions. Mint and raspberry plants are behind the rocks.
Rocks anchoring the center point of the paracord running from the ground to the gutter. Both ends of the paracord were held down by rocks as well.
One corner of a mylar blanket being covered in duct tape and weighed down by three pieces of broken concrete sitting on a piece of wood in front of some siding.
The duct tape re-enforced corner of the mylar blanket is held down with broken concrete.

Pros:

  • Cheap materials that are readily available
  • Relatively fast to set up on the fly
  • Minimal tooling required to put it up
  • Removable
  • No tape used where it could remove paint
  • Effective at reducing temperature and quickly

Cons:

  • One-time use
  • Will require cutting to get it down
  • Required some maintenance after a day of being up
  • Needs a ladder to set up
  • Required two people to be outside in the heat on the south face of the house for 35 minutes
  • Kinda ugly
  • Dealing with duct tape on top of a ladder in wind wearing gloves is a PITA

Lessons learned

  • I burned myself on the ladder before getting gloves. Don’t get burned.
  • I got sunburned, but when I sweat it dissolves sunscreen so that was expected.
  • I should build something prettier ahead of time that’s easy to take up and down but also cheap to build.
  • Putting a ladder in the middle of a garden bed without absolutely destroying the (very thorny) plants is hard but doable.
  • The mylar blankets in this configuration worked very well!

At last! A long distance QRP phone contact!

Good news everyone! I finally made a long-distance contact running QRP (10w) on SSB. I was able to complete a QSO with N8II in Jefferson County, WV on 20m during a WV QSO party from the top of Mt. Tabor. The distance between our stations was about 2,290 miles. I had been attempting to contact the station all day on and off since about 16:30 Pacific time. I was able to reach a couple stations in the Portland, OR area and one of them suggested that my portable antenna might be hung too low (at about 20′) and doing NVIS instead of getting out so I re-hung both ends of the antenna an additional 6′ higher and tried again. I had attempted to enlist K7AJK’s help to test my station’s audio to see if I was having RF feedback, but it seems he was in one of my antenna’s nulls. The next set of attempts I was able to nearly complete a QSO with N8II, but failed to get my full call and location across. I hit pause on attempting contact for a few minutes to attempt some other frequencies and 40m. After coming back and making another attempt I was finally able to make the contact with a bit of difficulty, but there you have it!

A map of the US showing contact pins WA, CA, AZ, NM, MI, and SC.
pskreporter.info showing stations that heard mine (yellow = 20m, blue = 40m)

As a side note I did some JS8Call work on 20m and 40m as well. The furthest signal report was about 2,000 miles away! Not bad for a portable QRP station.

Lessons learned:

  • A few extra feet of antenna elevation can make all the difference!
  • Minimal power can go a long way.
  • If you want to use a headset with a radio make sure you bring a PTT.
  • Two 20w solar panels did a good job of powering the entire setup until the sun got low enough that trees covered them. I barely used the battery in 5 hours of operation.
  • Don’t position your station under the feed line. It might cause RF feedback.
  • Bring extra water. I didn’t have enough for 5 hours.

Failed contact and a sweet waterfall

Alright, so, all this actually happened on May 29th. I just haven’t been able to sit down a put a post together so here we go! My partner and I decided to take a trip out to Oakridge, OR to avoid the setup for camping but to at least see some sweet nature (nature is neat). Read this before following that link. Naturally I decided to take the opportunity to do some transmitting, and the setup at Salt Creek Falls was the only setup I documented so here it is. We started by following the trail down to the lower observation area at the falls which is pretty great. It was a hot day and the mist coming from the bottom of the falls was pretty refreshing. I climbed back up to the top of the path to make a sked, or, prearranged SSB contact with Kevin, K7AJK in Portland, OR. I also grabbed some water from a stream on the way up for my Sawyer straw.

A waterfall, trees, and mountains with a walkway and railing in the bottom of the frame.
Salt Creek Falls
Black backpack with an antenna and paracord attached to the outside of the bag along with feed line and water bags attached sitting on pavement against guard rails with a waterfall in the background.
Bag full loaded with a radio station, food, water, etc.

It only took about 35 minutes to set the station up. Most of that was me failing like a complete amateur to get the paracord where I wanted it in two trees that were spaced about 80 feet apart using an arborist’s throw weight. For this contact we were going to attempt to do 80m NVIS so I strung my Chameleon EMCOMM III portable in a horizontal configuration, which is the configuration recommended by Chameleon for NVIS work. I have some bad pictures of both paracord runs attached to the antenna below, but because they’re bad so I’m not leading with them. What I didn’t capture in a photo was the fact there was a big hump between the trees and the antenna was only 6′ above the top of the hump between the trees, thus making the antenna not work as intended with the ground as a reflector. I still had a reasonably low SWR when transmitting on the Lab599 TX-500 but in retrospect I suspect the hump and poor atmospheric conditions might have resulted in difficulty getting out. I tuned to one of our prearranged frequencies and attempted to make contact once every 5 minutes for one hour. At two points I heard him calling but he didn’t get my replies. I’d later find out that a few of his calls were done at 100W and I could barely hear him. I’m not sure if this was due to bad space weather, poor antenna configuration, or both. I should have also been able to reach K7AJK as he was about 130 miles away which should be outside the NVIS skip zone (see Fig 3 here). It was a bummer but the bright spot is that I did manage to make some digital contacts using JS8Call despite not being able to reach K7AJK.

A battery, charge controller, and radio on top of a backpack as well as a coffee cup, arborist's thorwing weight, water bags, a notebook, and a red waterproof bag.
Radio station deployed in the shade and set up for voice
A Goal Zero Nomad 20 solar panel set up on the ground in the sun.
Solar panel keeping the station’s batteries charged
A video of the waterfall to make up for the bad pictures of the poorly-hung antenna

Lessons learned

  • It’s hard to photograph thin wire antennas in trees from the ground.
  • Don’t forget to take pictures when you mess up.
  • Better antenna placement yields better results. I didn’t properly assess the height of the hump relative to where the antenna was hung or account for the antenna sagging in the middle near the top of the hump.
  • Sometimes the space weather doesn’t cooperate and you can’t account for it.
  • Take all sorts of pictures when operating, especially in an interesting environment. I did some drive-by VHF Winlink work going through Eugene, OR and also did some HF work and SWL on the beach at Crescent Lake as well. None of that includes my improvised sun shelter made from part of a shelter tent and some branches sawed off of dead trees near the beach shored up with rocks.
  • A notable plus is that the 20W GoalZero Nomad 20 solar panel is enough to keep the radio station up and running doing both phone and data work in good and intermittent sunlight. I typically get 1A out of the panel in decent sunlight. The 12Ah Bioenno battery was fully recharged within minutes of the QRP radio transmitting both at Salt Creek Falls and Crescent Lake.

First time working 6m

Speaker stand with wooden dowel set up in a yard with an endfed dipole antenna attached to a dowel in the top of the antenna with red paracord extending right out of frame.
6m endfed dipole attached to the portable speaker stand antenna mast.

Hello, long time and no post! Tonight I decided to test out an antenna a friend of mine, K7AJK, let me borrow which also enabled me to make my first attempt to work 6m! This antenna is a Par EndFedz 6m end-fed dipole, and it works on, you guessed it! The 6m (50-54MHz) band. This is my first attempt at working this band, and yet another attempt to make phone (voice) contacts with my Lab599 TX-500, a newer QRP rig which is capable of a maximum transmit power of 10W. With this antenna and band I decided to attempt to use single-sideband (SSB) for my phone contact as most of my digital communications and work use SSB. Since I’m working SSB instead of FM, the antenna should be oriented horizontally to ensure better signal propagation and better changes of making contact with other SSB stations. The kind of propagation I’m going for here is groundwave propagation, meaning I’m attempting to get my signal out over the ground to reach other stations rather than attempting to bounce it off the atmosphere as would be the case with other types of 6m propagation. To get the antenna up and off the ground away from the roof and gutters of the house I set my speaker stand antenna mast up with the “matchbox” end of the antenna connected to some guy wire eyelets on the dowel portion of the mast, and the other end attached to a post coming up from some raised garden beds. This got the antenna about 9-10′ off the ground and away from the gutters which is fine for a test run.

Lab599 TX-500 radio powered up and tuned to 50.125 MHz sitting on a chair arm along a microphone.
QRP radio tuned to the 6m calling frequency.

A good place to start when attempting to make contacts on a specific band is to choose that band’s calling frequency, or at least a region of the band that others using the mode you’ve chosen are likely to be. For 6m SSB the calling frequency is 50.125MHz, in the bottom half of the band. I use this handy chart by iCOM to keep track of what regions are used by operators, and to understand specific frequencies that have specific uses such as SSTV and calling frequencies. I parked on the 6m SSB calling frequency and called a few times with no answer. I enlisted the help of Kevin, K7AJK to see if he could use any antenna and tune his radio to the calling frequency. As I asked him to do that another station in Vancouver, WA that was about 10 miles away came in running 50W. As I began a QSO with the other station at 5W K7AJK’s station got the brunt of the power as it was nearby. Fortunately he had his attenuator on and even with a vertically polarized antenna it swamped the receiver. As that was happening I was able to drop power to 1W and then raise it to 2.5W. The station in WA was still able to read me at lower power levels, albeit I was scratchy. That bodes pretty well none the less. The radio also drew less than 1A at 5W of transmit power as measured with a Buddipole PowerMini that I hooked up. The radio drew about 0.13A receiving only.

Zoomed out view of a radio sitting on a chair arm connected to a 12v battery and a 12v USB phone charger.
QRP radio operating on a 12AH battery with an additional phone charger connected.