Working ISS (01/23/2022)

This post is a bit of a quickie, but it covers an attempt to some of the basics about working ISS’ voice repeater and APRS digipeater. During this attempt to work ISS I wasn’t able to make any voice contacts, but I started with the following:

  • An Android phone running ISS Detector Pro
  • 5″ piece duct tape
  • Yaesu FT3DR
  • An Arrow handheld dual band 2m/70cm satellite antenna with built-in duplexer

Theory

As ISS or any satellite orbits earth in a non-geostationary orbit you’re likely to eventually have a certain number of passes over your location, depending on how the satellite is orbiting. You can use software to predict orbits, and therefore you can be ready when the satellite passes overhead. Ideally you’ll have the transponder frequencies of the satellite you’re trying to reach pre-programmed into your radio along with some doppler-shifted frequencies to try to reach the satellite as it approaches and departs. I didn’t do that, but have had decent luck without the doppler-shifted frequencies. Passes typically last minutes. What’s happening is that a lot of satellites have an uplink (ground -> space) and downlink (space-ground) frequency. Your radio must be able to transmit on one and listen to the other to make contacts. There are some cases where that’s not necessary such as working satellites with APRS digipeaters, or just receiving signals.

The attempt

I used the ISS detector pro app to find a longer pass (this one was about 6 minutes long). Before the pass I set my antenna up, connected it to my radio, and made sure it was in working order. After that I taped the phone to the beam of the antenna between the first 2m elements where it would fit using a piece of duct tape folded in on itself. Taping the phone to the boom enables me to aim the antenna using the app (screenshot later). I also configured the frequencies for the APRS digipeater on ISS, the crew communication uplink and downlink frequencies, and the FM repeater frequencies. As a side note sometimes astronauts, who are also licensed ham radio operators, will man the radios and talk with folks on the ground. In addition to programming frequencies you need to also program your APRS radio to use the digipeater path ARISS, otherwise the digipeater won’t send your packets back down to other stations.

Yaesu FT3D radio's APRS path configured to be "ARISS".
Yaesu FT3DR digi path set to ARISS or ISS.

Now it’s time for action! There’s a very narrow window to hit the ISS, so there’s a need to be quick and prepared. I went out in the street near my house a few minutes early with a clear-ish view of the sky and aimed the antenna at the satellite using the app. A screenshot below shows what the aiming screen looks like. The yellow circle is the direction the top of your phone is pointing and that should be aligned with the satellite on its track, the blue line with dots. The center of the screen is up and the and the outer ring is down. As the satellite passed I just aimed the antenna with the aid of the phone and tried to use the repeater. I didn’t hear anyone, but was able to switch to APRS and sent a beacon. I saw that the packet I sent was digipeated by ISS! Following that I checked the ARISS page and saw my call sign! You can also check https://aprs.fi and see your location as well as the path by which your packet arrived. The first hop for my position report was the ISS.

aprs.fi screenshot showing a path via NA1SS
An aprs.fi screenshot showing a path digipeated by NA1SS before going to APRS-IS via KM6YLW-2.

Camping in the Tillamook State Forest (1/21-23/2022)

It’s been a while and this will be a big post! My partner and I were able to go camping over the weekend, and if you’ve read any of my blog posts you won’t be surprised that I took the opportunity to practice some comms and off grid operating. I wanted to work HF, do some shortwave listening, and see if I could do any UHF/VHF communications. Additionally I wanted to run off of the 100AH battery box for a couple days to see how well it held up under constant use. This is also the first camping trip I brought the speaker stand antenna mast setup on.

On the way out I ran APRS with the Kenwood TM-D710G and the COMET-NCG CA-2X4SR antenna that mounts on the hood of the 4Runner. I noticed that on the way out that I had APRS coverage nearly the whole way out.

The first night we arrived late so I did a bit of SWL. I mostly got Radio Havana Cuba, Radio Nikkei, a distant station broadcasting in Mandarin, and Radio New Zealand International.

The next day I set the antenna up following a fun walk in the woods below the camp site. Most of my work on HF was done using the usual Endfedz Trail friendly 10/20/40m antenna. I strung it between the 4Runner and my portable antenna mast. I also added a 6m end fed dipole to the setup to see if I could reach Kevin, K7AJK from my camp site on the Lab599 TX-500. We had no luck. I wasn’t actually able to make any voice contacts on 20m with this setup even running at 10W, but there was a contest on the band so it was both congested and I suspect folks were running at fairly high power levels to make contacts. As you’ll be able to see from photographs I did a little hack with a stick I found to push the antenna higher off the ground on the truck side. It was especially helpful in preventing the hatch back from striking the antenna.

View of an antenna mast guyed to the ground and a line with an antenna running to a SUV in the background
Guyed antenna mast with two antennas added
View of an SUV with a piece of wood lashed to the roof rack holding some paracord off of the top of the vehicle.
Found piece of wood used to push the antenna higher off of the roof of the 4Runner
An antenna tied to paracord running from the upper-right corner of the photo to a mast several feet away on the edge of a hill. The transformer for the antenna is visible with feed line hanging down. Forest in the background.
The Trail Friendly Endfedz is strung along some paracord to prevent damage to the antenna if the mast blew over.

After a few hours of having no success running phone I decided to switch to packet. Moving the radio into the vehicle reduced the SWR and allowed me to run the entire setup from the 100AH battery since I had used the 4.5AH battery quite a bit for SWL already. I had also been simultaneously been running my 2m rig and APRSDroid on the tablet connected via Bluetooth to the mobile radio with a Mobilinkd TNC3+. I was able to send a number of text messages back and forth between friends using SMSGTE, which was nice given the complete lack of cell service. At this point I was still using the antenna on the truck.

A Raspberry Pi connected with a Lab599 TX-500 radio via two cables sitting in the back of a 4Runner.
Lab599 TX-500 connected to the off grid Raspberry Pi
A tablet sitting on a metal camping table running the JS8Call application.
Tablet running JS8Call
A toolbox with power connections running from it sitting in the front seat of a vehicle.
100AH battery box connected to the Kenwood TM-D710GA in the vehicle, the Lab599 TX-500, and some lighting.

After quite some time operating on digital I decided to test some configuration changes I made to js8cli to increase the accuracy of maidenhead coordinates I was submitting to APRS-IS via Internet-connected stations running JS8Call. I had some pretty good luck as my position was accurately reported.

A photograph of the screen of a tablet showing the JS8Call application running. A callsign, timestamp, and 10-digit maidenhead coordinate are displayed prominently in the photo along with a screen showing contacts with other stations.
JS8Call screen shot showing a 5-level maidenhead position set via js8cli running an daemon mode
A screenshot of the website aprs.fi showing a Google satellite map with a rectangular marker for K7JLX placed in a clearing.
My position as displayed on aprs.fi

Apart from all the fun I had on HF, and walking around the forest with my HT (where I was reliably digipeated at 5w) I also figured I’d try to see if I could hit some of the repeaters in the Portland area, so I swapped the vertical antenna on the vehicle for my collapsable J-pole and speaker stand antenna mast. Much to my surprise I was actually able to get into the repeaters in the Portland area at 5w, but it was a bit sketchy as sometimes they wouldn’t key up. Apart form that I could get a bunch of APRS stations and digipeaters as well as some folks on the 2m calling frequency. I actually ended up having much better luck on 2m than on HF this time around.

The head unit of a Kenwood TM-D710GA radio placed on the dash of a vehicle.
Kenwood TM-D710GA on the dash of the 4Runner
A 4Runner with an antenna mast tied to the front bumper and connected to the vehicle with feedline. There's a camping table and chairs to one side and in the background are trees, a valley and a mountain on the other side of the valley.
The 4Runner antenna hood antenna swapped for an elevated J-Pole on the speaker stand mast.
Close-up of paracord tying the the antenna mast to steel tubing on an offroading bumper.
Using paracord to lash the antenna to the bumper of the truck

As you might have noticed from the pictures above I ended up moving the antenna because winds were getting higher and I was afraid the antenna might move side-to-side on the bumper’s tubing. I ended up shifting it toward the driver’s side where I could secure it to both the tube running horizontally and to the spot where the tube split, meaning the mast wouldn’t shift from side to size because it was secured with the paracord on both axes. since the antenna mount on the vehicle uses the same connector as most of my coax and the J-pole I was able to just connect the J-pole directly to the existing cabling in the 4Runner. Easy!

For the entire trip apart from doing some SWL with the TX-599 on its 4.5AH battery away from the truck and by the fire ring I ran all the lighting and radios from the 100AH battery box. We charged the tablet, my partner’s phone, and my phone from the battery box as well. We only drew down to 96% in two days. One day had a lot of heavy radio usage as well so that’s all a good sign.


Yellow witch's butter growing from the top of a tree stump with diamond cut patterns.

Some witch’s butter we found on a stump near our camp site

Using the portable LiFePO4 battery banks in the Gifford Pinchot National Forest

This won’t really be a post about doing a lot of operating. It’s mostly about powering and recharging stuff. The long story short of operating from the specific site we were at is that I didn’t make any contacts apart from another station on JS8Call that heard one of my heartbeats. I wasn’t in a good position to be heard, but I could hear a lot of other stations on 40m throughout the afternoon and evening. I was also able to hear Radio Havana and what I suspect might have been Zambia NBC Radio 1 for a few minutes.

I was able to recharge the Bioenno 4.5Ah battery in an hour or so as we broke camp and packed the vehicle. I’d been using that radio the previous day and listening to shortwave stations the whole night. A solid hour of charging at 1.1A using the BuddiPole PowerMini on a single GoalZero Nomad 20 solar panel was enough to replentish the battery.

The 100Ah battery was easily charged in about 45 minutes. We’d only drawn about 3.5Ah from the battery running lights, charging a phone, and a portable projector. The panel in use here is a Bioenno 100W folding panel and from the VictronConnect application screenshot it’s charging at about 4.5A. The back view shows how the solar panel is connected to the charging unit and the battery. This is the first time I’ve used the West Mountain Radio Epic PWRGate to charge the 100Ah battery. I’m hoping to use it for charging from a vehicle alternator, an existing DC power supply, or solar panel. I’m also hoping to add a charger like this to the box along with a temperature probe to ensure the battery isn’t charged when it’s too hot or cold. The Relion RB100 has a minimum charging temperature of -4F.

This a detailed view of the West Mountain Radio Epic PWRGate. The green LED indicates it has good solar charging voltage, and the blue LED that was slowly pulsing which indicated that the battery was being bulk charged by the solar panel. The PWRGate is programmed with the specific battery chemistry settings for LiFePO4 batteries and is current limited at 6A for some of the other batteries I charge with this setup.

Operating while camping on Mt. Hood 7/31/2021

Hello all, it’s about time I wrote a post about my camping trip my partner and I took a couple weeks ago. I took my trusty Lab599 TX-500 kit, a couple 20W GoalZero Nomad solar panels, headset, and table/chair combo up camping with our “new” 4×4. I wanted to do some HF QRP and some handheld UHF/VHF operation while I was out. I brought some of the same portable furniture that I used at the beach last post since it worked out so well.

The view was pretty sweet for this one. The smoke from the wildfires made everything a bit more hazy but pretty great none-the-less.

View of a heavily forested valley from a high vantage point. In the foreground a radio is sitting on a gray metal camping table.
View while operating

While operating HF I made a number of contacts, and the solar panels kept the 4.5Ah Bioenno LiFePO4 battery built into the HF QRP radio kit charged the whole day. The first HF contact I made was with Stefan, AF6SA who was working POTA in Eldorado Natoinal Forest (K-4455). His signal was 5/6 on at about 450 miles away on 20m. I also made a contact with VA3AAA, Stanley in Ontario, Canada. I was pretty excited to reach Ontario with a low power radio. That contact was also logged on 20m. I also made a contact with the K0GQ radio club in MO on 20m. All of these contacts were made between 5 and 10w using the Trail-friendly EndFedz EFT-10/20/40 antenna strung between a couple trees about 50′ apart and about 25′ above the ground.

I switched radios and bands to see if I could get into some of the repeaters in the Portland area (I could) with my Yaesu FT3DR and a Signal Stick antenna. I ended up on 2m and caught two hams on 146.520Mhz doing a SOTA activation: K7AHR and K7IW. I think they were on Lookout Mountain, but I can’t remember and didn’t properly log it. I was running 5W for those contacts.

Tour of the radio setup at the camp site

Operating naked on the beach!

Howdy and welcome back! I spent the day at Rooster Rock, a clothing-optional beach on the banks of the Sandy River in Oregon. Since I burn easily I got a cheap tent from Target to get very sandy and to keep me and my gear safe from the sun! As a bonus this specific tent actually has a pass through for cables in the front corner to the left of the door which is pretty great for running solar panel connectors and feed line. I didn’t have any successful contacts, but that’s not surprising given the difficulties I had tuning the Superantenna. I couldn’t manage to get a decent SWR on the QRP radio. The real point of the post is about portable shelter options that can keep you out an entire day even when you’re literally naked. This was able to keep me and the gear cool enough to keep going. Folding a corner of the tent up allowed the interior mesh to breathe away from the sun. In the picture below you can see through the door that the rain fly has been lifted.

A tent on a beach with some small trees and brush in the background. Two small solar panels rest next to the tent. An antenna is set up behind the tent in the brush.

We weren’t able to get the best spot but at least we got something out of the way on a path and had enough space to set the tent up. I had enough clear space to keep the solar panels going all day as well. They kept the battery kept everything charged and running. I tried to see if I could make any UHF/VHF contacts but I was in a gorge so I had very limited luck. I’m sure you’re just as shocked as I am. I then tuned the Superantenna as best I could for 20m and tried to make some contacts but I wasn’t getting out. I heard a bunch of stations on the east coast and in the midwest including participating in a New England radio event or QSO party for the 4th of July weekend. I wasn’t able to get out to anyone though. In addition to those stations I could also hear but not reach Paolo IK5SRF in Tuscany, Italy. Paolo had quite the pileup going.

Interior view of a tent front the door showing a small folding table, three-legged folding camp chair and equipment resting against the walls of the tent. Through the mesh you can see the river.

A view of the radio setup, the table, and chair. This three-legged chair is actually pretty comfortable.

A view of the top of a metal folding table with a radio, water bottle, sunscreen, a pen, and notepad. Brush and beach sand is visible through a mesh panel.

My conspicuously-empty log book with only notes and the radio.

At the end of the day breaking the tent down was pretty easy. We were able to tear down the entire site and radio station in about an hour, have it loaded into the beach wagon and off we were. Much of that time was as usual rolling feed line so it’s not a pain to unroll later.

Coping with the heat wave

Hello all, while this isn’t actually a post about amateur radio I wanted to post about how we (my partner and I) decided to deal with the June 2021 heatwave in the Pacific Northwest. While this isn’t directly related to ham radio I think it’s worth discussing as the temperatures in this region don’t typically reach the levels they were at and most homes and people aren’t prepared to cope with those temperatures. Some folks will probably laugh at this post and the situation in its entirety, but you have to remember that homes, businesses, animals, and people in what is typically a fairly temperate climate aren’t used to these sorts of temperature spikes. Some of us will mostly be uncomfortable and maybe inconvenienced but for others this is a deadly situation. There are large numbers of unhoused folks sleeping rough and stuck outdoors during this time. It is easy to die of exposure in situations like this even in a city. In nature you might be better or worse off depending on where you are. When operating in the field it’s important to keep yourself and your equipment cool, and I don’t think this is the last time we will have unseasonably hot weather. Next time it could be during another disaster or trigger secondary problems like power outages. This post is mostly about optimizing a solution for a problem with cheap and easily available materials to decrease misery and help alleviate a situation that could lead to an emergency.

One obvious issue with the house we live in during this specific situation is that it has a very large single-paned south-facing window, which definitely heats the house up during the summer. We were fortunate enough to have a single window-mounted AC unit for the whole house but it was only able to keep the house in the high 80s to low 90s which is definitely better than 110+ degrees, but I wasn’t sure if the power grid would hold up under additional load and the heat itself. My partner and I decided we’d take some steps to cool the house further for our comfort and our dog’s safety. The most obvious thing we could do to limit solar gain would be to cover windows that we could with blankets, etc. which helped, but we didn’t have a big enough blanket to cover the window. I wanted to actually keep the heat outside rather than heating a blanket that was already on the inside of the house and having it radiate that heat into the living space. A cheap reflective shield with an air gap between the shield and the house would be a possible solution to the problem.

Problems to solve:

  • Keeping as much heat out of the house as possible
  • Shielding a large area
  • Keeping it simple
  • Passive cooling (a plus)
  • Temporary mounting
  • Not wanting to put tape on paint
  • Keeping it cheap
View of the outside of a house with a mylar blanket suspended in front of a large window supported by paracord. There are lots of plants.
Hastily constructed mylar “heat shield”

A quick trip to the grocery store yielded the following materials: a roll of duct tape, 50′ of paracord, and 4 mylar blankets (we only needed 3 it turns out). The entire solution cost less than $20, some moderate burns, and sweat. We taped the edges of the mylar blankets on both sides to hold them together and taped across the gap intentionally leaving holes that would be left to ensure the wind loading was lower since this was in part just held up by tape. Our first attempt at the solution was to run paracord from the fence to the gutter, but it required too much paracord and the angle the mylar blanket would be at would be less-than-optimal so I ran the paracord from the ground and weighed the ground ends and center point down with rocks. The end of the paracord attached to the gutter was run between the gutter nails and didn’t require tying or taping. I did, however, end up taping the corner of the mylar blanket to the inside of the rain gutter because there wasn’t a suitable anchor point for paracord near the corner of the house that I wanted to cover. We weighed down one corner with some rocks and were back inside within 35 minutes. Ouch note: ladders get hot in intense sun and gloves are a good idea.

The photos I’m including were taken after day 2. We had to go back out and shore parts of the heat shield up because some of the spots I taped to the paracord slid down. To combat that I just did extra-long wraps of duct tape around the paracord and attached it to the edges of the mylar blankets. I also taped the inside of the shield to the paracord at the bottom to prevent the heat shield from riding up the paracord. The end of the mylar blanket that was weighed down by rocks also tore in the wind/breeze so we coated the corner we stuck the rocks in with duct tape as a protective pad for the mylar. All the photos are this setup are shown below. The air gap between the window and mylar also served as a nice passive cooler. As the breeze and wind blew between the mylar and window it carried some of the heat away. After installing the mylar heat shield the temperature in the house dropped by 10-15 degrees over the next 30 minutes!

View from the inside of the window showing hanging plants, art work, and the mylar heat shield. Paracord is duct taped to the blakent to keep it off of the window and in position.
View of the back of the heat shield through the window.
One corner of a mylar blanket duct taped to the inside of a rain gutter. The tape is coming off the gutter in spots and the blanket is precariously attached.
Duct taped corner two days after installation. This is the weakest part of the installation.
Paracord tied around two rocks being used as a center point anchor with two "wings" going two directions. Mint and raspberry plants are behind the rocks.
Rocks anchoring the center point of the paracord running from the ground to the gutter. Both ends of the paracord were held down by rocks as well.
One corner of a mylar blanket being covered in duct tape and weighed down by three pieces of broken concrete sitting on a piece of wood in front of some siding.
The duct tape re-enforced corner of the mylar blanket is held down with broken concrete.

Pros:

  • Cheap materials that are readily available
  • Relatively fast to set up on the fly
  • Minimal tooling required to put it up
  • Removable
  • No tape used where it could remove paint
  • Effective at reducing temperature and quickly

Cons:

  • One-time use
  • Will require cutting to get it down
  • Required some maintenance after a day of being up
  • Needs a ladder to set up
  • Required two people to be outside in the heat on the south face of the house for 35 minutes
  • Kinda ugly
  • Dealing with duct tape on top of a ladder in wind wearing gloves is a PITA

Lessons learned

  • I burned myself on the ladder before getting gloves. Don’t get burned.
  • I got sunburned, but when I sweat it dissolves sunscreen so that was expected.
  • I should build something prettier ahead of time that’s easy to take up and down but also cheap to build.
  • Putting a ladder in the middle of a garden bed without absolutely destroying the (very thorny) plants is hard but doable.
  • The mylar blankets in this configuration worked very well!

At last! A long distance QRP phone contact!

Good news everyone! I finally made a long-distance contact running QRP (10w) on SSB. I was able to complete a QSO with N8II in Jefferson County, WV on 20m during a WV QSO party from the top of Mt. Tabor. The distance between our stations was about 2,290 miles. I had been attempting to contact the station all day on and off since about 16:30 Pacific time. I was able to reach a couple stations in the Portland, OR area and one of them suggested that my portable antenna might be hung too low (at about 20′) and doing NVIS instead of getting out so I re-hung both ends of the antenna an additional 6′ higher and tried again. I had attempted to enlist K7AJK’s help to test my station’s audio to see if I was having RF feedback, but it seems he was in one of my antenna’s nulls. The next set of attempts I was able to nearly complete a QSO with N8II, but failed to get my full call and location across. I hit pause on attempting contact for a few minutes to attempt some other frequencies and 40m. After coming back and making another attempt I was finally able to make the contact with a bit of difficulty, but there you have it!

A map of the US showing contact pins WA, CA, AZ, NM, MI, and SC.
pskreporter.info showing stations that heard mine (yellow = 20m, blue = 40m)

As a side note I did some JS8Call work on 20m and 40m as well. The furthest signal report was about 2,000 miles away! Not bad for a portable QRP station.

Lessons learned:

  • A few extra feet of antenna elevation can make all the difference!
  • Minimal power can go a long way.
  • If you want to use a headset with a radio make sure you bring a PTT.
  • Two 20w solar panels did a good job of powering the entire setup until the sun got low enough that trees covered them. I barely used the battery in 5 hours of operation.
  • Don’t position your station under the feed line. It might cause RF feedback.
  • Bring extra water. I didn’t have enough for 5 hours.

Failed contact and a sweet waterfall

Alright, so, all this actually happened on May 29th. I just haven’t been able to sit down a put a post together so here we go! My partner and I decided to take a trip out to Oakridge, OR to avoid the setup for camping but to at least see some sweet nature (nature is neat). Read this before following that link. Naturally I decided to take the opportunity to do some transmitting, and the setup at Salt Creek Falls was the only setup I documented so here it is. We started by following the trail down to the lower observation area at the falls which is pretty great. It was a hot day and the mist coming from the bottom of the falls was pretty refreshing. I climbed back up to the top of the path to make a sked, or, prearranged SSB contact with Kevin, K7AJK in Portland, OR. I also grabbed some water from a stream on the way up for my Sawyer straw.

A waterfall, trees, and mountains with a walkway and railing in the bottom of the frame.
Salt Creek Falls
Black backpack with an antenna and paracord attached to the outside of the bag along with feed line and water bags attached sitting on pavement against guard rails with a waterfall in the background.
Bag full loaded with a radio station, food, water, etc.

It only took about 35 minutes to set the station up. Most of that was me failing like a complete amateur to get the paracord where I wanted it in two trees that were spaced about 80 feet apart using an arborist’s throw weight. For this contact we were going to attempt to do 80m NVIS so I strung my Chameleon EMCOMM III portable in a horizontal configuration, which is the configuration recommended by Chameleon for NVIS work. I have some bad pictures of both paracord runs attached to the antenna below, but because they’re bad so I’m not leading with them. What I didn’t capture in a photo was the fact there was a big hump between the trees and the antenna was only 6′ above the top of the hump between the trees, thus making the antenna not work as intended with the ground as a reflector. I still had a reasonably low SWR when transmitting on the Lab599 TX-500 but in retrospect I suspect the hump and poor atmospheric conditions might have resulted in difficulty getting out. I tuned to one of our prearranged frequencies and attempted to make contact once every 5 minutes for one hour. At two points I heard him calling but he didn’t get my replies. I’d later find out that a few of his calls were done at 100W and I could barely hear him. I’m not sure if this was due to bad space weather, poor antenna configuration, or both. I should have also been able to reach K7AJK as he was about 130 miles away which should be outside the NVIS skip zone (see Fig 3 here). It was a bummer but the bright spot is that I did manage to make some digital contacts using JS8Call despite not being able to reach K7AJK.

A battery, charge controller, and radio on top of a backpack as well as a coffee cup, arborist's thorwing weight, water bags, a notebook, and a red waterproof bag.
Radio station deployed in the shade and set up for voice
A Goal Zero Nomad 20 solar panel set up on the ground in the sun.
Solar panel keeping the station’s batteries charged
A video of the waterfall to make up for the bad pictures of the poorly-hung antenna

Lessons learned

  • It’s hard to photograph thin wire antennas in trees from the ground.
  • Don’t forget to take pictures when you mess up.
  • Better antenna placement yields better results. I didn’t properly assess the height of the hump relative to where the antenna was hung or account for the antenna sagging in the middle near the top of the hump.
  • Sometimes the space weather doesn’t cooperate and you can’t account for it.
  • Take all sorts of pictures when operating, especially in an interesting environment. I did some drive-by VHF Winlink work going through Eugene, OR and also did some HF work and SWL on the beach at Crescent Lake as well. None of that includes my improvised sun shelter made from part of a shelter tent and some branches sawed off of dead trees near the beach shored up with rocks.
  • A notable plus is that the 20W GoalZero Nomad 20 solar panel is enough to keep the radio station up and running doing both phone and data work in good and intermittent sunlight. I typically get 1A out of the panel in decent sunlight. The 12Ah Bioenno battery was fully recharged within minutes of the QRP radio transmitting both at Salt Creek Falls and Crescent Lake.

First time working 6m

Speaker stand with wooden dowel set up in a yard with an endfed dipole antenna attached to a dowel in the top of the antenna with red paracord extending right out of frame.
6m endfed dipole attached to the portable speaker stand antenna mast.

Hello, long time and no post! Tonight I decided to test out an antenna a friend of mine, K7AJK, let me borrow which also enabled me to make my first attempt to work 6m! This antenna is a Par EndFedz 6m end-fed dipole, and it works on, you guessed it! The 6m (50-54MHz) band. This is my first attempt at working this band, and yet another attempt to make phone (voice) contacts with my Lab599 TX-500, a newer QRP rig which is capable of a maximum transmit power of 10W. With this antenna and band I decided to attempt to use single-sideband (SSB) for my phone contact as most of my digital communications and work use SSB. Since I’m working SSB instead of FM, the antenna should be oriented horizontally to ensure better signal propagation and better changes of making contact with other SSB stations. The kind of propagation I’m going for here is groundwave propagation, meaning I’m attempting to get my signal out over the ground to reach other stations rather than attempting to bounce it off the atmosphere as would be the case with other types of 6m propagation. To get the antenna up and off the ground away from the roof and gutters of the house I set my speaker stand antenna mast up with the “matchbox” end of the antenna connected to some guy wire eyelets on the dowel portion of the mast, and the other end attached to a post coming up from some raised garden beds. This got the antenna about 9-10′ off the ground and away from the gutters which is fine for a test run.

Lab599 TX-500 radio powered up and tuned to 50.125 MHz sitting on a chair arm along a microphone.
QRP radio tuned to the 6m calling frequency.

A good place to start when attempting to make contacts on a specific band is to choose that band’s calling frequency, or at least a region of the band that others using the mode you’ve chosen are likely to be. For 6m SSB the calling frequency is 50.125MHz, in the bottom half of the band. I use this handy chart by iCOM to keep track of what regions are used by operators, and to understand specific frequencies that have specific uses such as SSTV and calling frequencies. I parked on the 6m SSB calling frequency and called a few times with no answer. I enlisted the help of Kevin, K7AJK to see if he could use any antenna and tune his radio to the calling frequency. As I asked him to do that another station in Vancouver, WA that was about 10 miles away came in running 50W. As I began a QSO with the other station at 5W K7AJK’s station got the brunt of the power as it was nearby. Fortunately he had his attenuator on and even with a vertically polarized antenna it swamped the receiver. As that was happening I was able to drop power to 1W and then raise it to 2.5W. The station in WA was still able to read me at lower power levels, albeit I was scratchy. That bodes pretty well none the less. The radio also drew less than 1A at 5W of transmit power as measured with a Buddipole PowerMini that I hooked up. The radio drew about 0.13A receiving only.

Zoomed out view of a radio sitting on a chair arm connected to a 12v battery and a 12v USB phone charger.
QRP radio operating on a 12AH battery with an additional phone charger connected.

Operating from a park for a couple hours

After a bit of a posting hiatus I thought I’d post a bit about some impromptu radio operation from a park on a fairly sunny weekend day. My partner had a meeting with some folks in our pod in Ladd’s Addition, a Portland neighborhood with a central park so I decided to set up my portable radio station and do some UHF/VHF work locally to see who I could reach from said park. The station I brought is based on a Kenwood TM-V71A and fits in a single bag along with a battery and a 20W folding solar panel. This is essentially the same setup I’d use for emergency communications with a larger antenna or solar panel.

Roll-up J-Pole antenna hung in a rose bush
Ed Fong roll up j-pole deployed in bush
A radio sitting on top of a backpack connected to a solar charger, solar panel, and battery.
Portable UHF/VHF radio and power setup.

I ended up putting my modified Ed Fong DBJ-1 roll-up j-pole antenna in a large rose bush and hooking it up to my TM-V71A, and hooking the battery, solar panel, and charge controller up. I started operating at medium power (10W) and was able to reach Roger, W7RC, in Battleground, WA without issue on the 2M calling frequency (146.520MHz). This is pretty typical as he runs a beam antenna with the capability of transmitting at 1.5KW and is something of a local fixture. He reported me coming in with full quieting at 10W, and when I dropped to 5W (low power) he heard me with a little static. I also made some additional contacts including one in the Council Crest area: Ed, WB2QHS. He was out for a walk with an HT and we were able to talk with perfect clarity and then some static as he moved around with me running 5 and 10W. His elevated position helped facilitate communications. In about 2.5 hours I used somewhere around 1.3Ah of battery power, but was able to recharge the battery completely from the solar panel by the time I left. Not bad! The radio draws about 0.6A idling, and the solar panel charged at a maximum rate of ~1.1A in more intense sunlight. When I was transmitting at 10W the radio drew ~5A and at 5W ~3.5A. All these power figures are as measured by my Buddipole Power Mini. The current model features a USB port where the one I’m running doesn’t. I should also mention I topped up my phone charge from the battery as well.

If the solar panel provides more power than is required for the radio’s operation and the battery is charged the radio doesn’t draw from the battery. In the event the solar panel isn’t providing enough power to cover the radio’s power needs it dips into the battery, and when the radio consumes less power than the solar panel provides the battery is charged with spare current.

Closed backpack on the groud with a folded solar panel in the attached cargo net.
UHF/VHF setup packed up in a single backpack.

As shown above the whole station packs into my backpack without issue. Were I not on call for my job and carrying a hotspot and laptop there would be some additional room in the bag.

Diagram depicting a solar panel and battery attached to a controller, the controller to a radio, and a radio to an antenna.
Portable radio station block diagram depicting the connections between various station components.