Starlink Mini as emergency comms platform

Welcome to another post. This one covers potential uses for the Starlink Mini in an emergency communications, gird down, or other scenario where Internet connectivity is required but unavailable using other means. There are a number of use-cases for it and there are also potential limitations of the device and its use during an emergency. Below is a photo of a Starlink Mini with an aftermarket protective case mounted to ferromagnetic plates (12ga Simpson strong ties) that are bolted to an aluminum roof rack on a vehicle. The screw hole pattern on the strong ties allows easy mounting to the roof rack with its supplied hardware.

What is a Starlink Mini?

The Starlink Mini is a standalone satellite terminal that provides high speed Internet with a clear view of the sky and active service. There are a number of Starlink devices created for various uses. The smallest and most portable offering is the Starlink Mini. It can provide advertised speeds of up to 100Mbps in ideal conditions and the cheapest roam plan for the mini comes with 50GB of data per month at a cost of $50 in the US as of this writing. Service can be paused at the end of the current billing cycle without cost to the user if it’s not needed and can be reactivated at any time. The terminal itself also costs about $450 and is currently on sale in the US. The Starlink Mini doesn’t require an external router like its predecessors and contains its own wifi router and a wired ethernet port. The device is configured and managed with a smartphone app and is designed to be fairly resilient against poor weather conditions. It includes a 15m power cable with 2.1×5.5mm barrel connectors, AC adapter that provides the unit 30v DC, a kick stand, and mast/pipe mounting kit. The Starlink Mini can also be used on a vehicle that’s in motion. The specifications for the unit can be found here.

How can it be used?

There are a number of potential uses:

  • A standard Internet connection that can do everything a regular Internet connection can do: e-mail, social media, chat/voice/video messaging, etc.
  • Using the device to facilitate wifi calling with standard cell phones. This is useful when there’s no cell signal and you need to contact emergency services or call for a tow, etc.
  • Use for Internet-based navigation services such as Google Maps to get live updates on road closures, etc. in areas where there’s no cell service.
  • An Internet gateway for AREDN to provide other users on the mesh with Internet connectivity when other Internet connectivity is unavailable to the mesh or is otherwise saturated.
  • Integration with existing disaster response tools such as Winlink. The Starlink can be used as an Internet gateway for Winlink telnet transport, and its high bandwidth connection accelerate transfers that might be slower using RF Winlink technologies such as packet or VARA. Using a Starlink terminal also removes the need for a dedicated Windows host to continuously run a VARA software modem.
  • Use as an alternative to AREDN when line-of sight to another AREDN node isn’t possible or when adjacent nodes are offline.
  • APRS IGate Internet connection.
  • A backup Internet connection when power is down or there is an Internet outage.

Things it can’t do:

  • Replace GMRS or UHF/VHF communications. This is an Internet connection and doesn’t replace local comms and nets unless every team has one and reliable power for it. Even then it’s not sufficiently portable to communicate with individual teams when cell service is down.
  • Natively connect to AREDN. A router and some configuration will be required to connect the Starlink’s ethernet port to an AREDN WAN port.
  • Work well without a clear view of the sky, active service, and available bandwidth to communicate with satellites. Obstructions like trees, buildings, etc. will prevent it from working, and too many users or too few available satellites for a given area can negatively impact functionality, bandwidth and latency.

Real life use

I’ve only had the Starlink Mini for a couple months as of the time of writing but have already used it in two situations that weren’t testing or experimentation.

The first real use of the Starlink I had was a long road trip in poor weather (rain, snow, dense fog, high winds) where cell coverage was spotty at various points during the 5 hour drive. I was able to use the Internet connection to maintain contact with others, facilitate navigation, and stream music. On the way back there was an accident that backed up the interstate I was on for miles in both directions, and created hours-long delays. Despite not having cell coverage before I reached the stopped traffic I was able to avoid the wreck because Google Maps got a real-time alert and routed me around the accident using an alternate route automatically.

The second real use of the Starlink Mini was allowing me to continue working during an Internet outage. I was able to work normally including video calls and meetings after setting the unit up outside and connecting it to my network in a box (boost converter and router) that provided strong wifi coverage in the house. Even if I had lost Internet connectivity and power I could have run the network-in-a-box and Starlink on battery. See photos below of the network in a box.

Adapting the unit to work without AC power

The first problem to solve with the unit is its reliance on AC power. You can connect the unit to an inverter or AC generator for power, but using a generator requires a steady supply of fuel and an AC inverter consumes a lot of power that’s used to boost your 12v DC batteries to 120v AC only to be downconverted to 30v DC in the end making it less efficient than a single step of boost conversion. I chose a boost converter that boosts the power from 12v DC to 24 DC and can provide up to 10A of current. While some power is lost in the boosting process this is much more efficient than a large voltage boost and AC conversion followed by a second downconversion to 30v DC. The 24v boost converter and that works with the 15m DC cable included with the kit.

It’s worth noting that the power cable is a small and there’s too much voltage drop over the length of the cable with 12v to run the unit as the required amperage at 12v is too high for the cable gauge, and the voltage is too low to power the unit. The higher voltage provided by the boost converter requires less amperage to provide the same wattage to the Starlink. Ohm’s law (Pwatts = Iamps * Vvolts rewritten as I = P / V using variable isolation) tells us that at a reference power level of 25w and 12v the small gauge cable has to handle about 2.1A over 15 meters, and that doesn’t consider voltage drop which prevents the device from functioning properly [25w / 12v = ~2.1A]. The same reference power level (also excluding voltage drop) at 24v requires the wire to handle about 1.1A [25w / 24v = ~1.1A]. Shorter cables such as the 5m aftermarket cables can run the unit on 12v but it does get fairly warm running on that voltage even with the shorter cable length and I wouldn’t recommend that especially in a warm environment as it may damage the Starlink Mini.

Power connection block diagrams for stock configuration and my base DC configuration

Exploded view of connections made in the base DC setup with the optional ethernet cable represented. From left to right, top to bottom is the Starlink Mini upside down showing the connection points, an ethernet cable with nothing connected to it, the DC power cable, 12-24v boost converter, and battery. It’s worth noting that the boost converter pictured here is for another project and is much larger physically and in terms of power capacity (20A) than the one used by me to run the device (10A) in the field and is there as an example.

Network in a box

The network in a box is my solution for making the components that run the Starlink from a battery more compact, portable, and protected from dust and rain when in transit. Having all that set up ahead of time reduces the amount of time needed to fumble around making connections under duress or in adverse conditions and reduces the likelihood of human error causing damage to various components given the differences in voltage between the Starlink Mini and all other components. After dust and rain caps are removed from the ports it is no longer protected from the elements. There is a section that details the network in a box’s wiring, ports, etc. near the bottom of the post. The picture blow shows the system connected to power the Starlink, connect ethernet to the router included in the box, and has the optional ethernet connection to the laptop hooked up. Another advantage of having a separate network in a box is that the router running OpenWRT is more configurable than the Starlink Mini itself and supports features like firewalls and VLANs. These features can be important when integrating the Internet connection with an AREDN mesh node.

Optimizations, accessories, and considerations

Power consumption and snow melting capabilities

The unit tends to use about 25w of power at the unit (not including power used boosting the voltage) while running without the snow melt system running. I’ve intentionally disabled the snow melt functionality to prevent unwanted spikes in power usage. Most scenarios I’ll use the unit in involve me being outside or near the unit so clearing snow from the unit by hand shouldn’t be an issue. With the additional thickness of the protective polycarbonate layer and small air gap between the two I suspect the snow melting functionality would be less effective anyway.

Cable kits and cabling considerations

I have two power cables for the unit – one aftermarket 5m cable and the 15m cable included with the kit. The 5m cable is more efficient and has a lower voltage drop than the 15m one and can be used when the unit doesn’t need to be far from me to get a clear view of the sky. It’s also nice to deal with only 5m of cable unless you actually need the 15m length to fit your situation. These power cables are 2.1 x 5.5mm barrel connectors with a center pin positive configuration with weather resistant boots on both ends. I did splice powerpole connectors inline with the Starlink DC cable so I can connect directly to a 24v boost converter that has powerpole ends installed if necessary. It removes the need for multiple adapters in some situations, but allows you to connect to the native barrel connector in others.

In order to connect the unit to AREDN or any other network you might want to run that can’t run as a wifi client you’ll have to purchase a special weather hardened ethernet cable that has a boot that seals the port on the unit when the plug is removed from the port. I have an aftermarket 5m cable to match the power cable’s length and purchased a 15m cable from the Starlink website for about $30. This pairing of cables enables me to optionally connect the unit to a router or switch and can allow me to move the wifi access or cabled access closer to my work area which might be necessary if the position of the Starlink unit prevents a reliable wifi connection.

The official and aftermarket Starlink ethernet cables I purchased have proprietary RJ45 ends with a weather resistant boot that protects the jack from water and dust ingress. I ended up cutting one end off of each ethernet cable and installing a standard RJ45 end for compatibility with standard ethernet jacks found on most consumer routers and switches.

Protecting the unit from adverse conditions and adding additional mounting capabilities

While it’s not explicitly necessary to deploy the Starlink Mini physically hardening the unit with an aftermarket case could also be useful in some situations and has some advantages, but has costs in terms of additional bulk, weight, and safety considerations in my configuration. The surface of the satellite terminal that faces the sky can be scratched, gouged, or otherwise damaged by branches or sharp objects. Third party manufacturers make cases for the unit that allow it to operate in rougher conditions than it was designed to and add some advantageous security properties along with additional mounting options.

The case I purchased from Striker Fabrication has a handle, aluminum baseplate, and polycarbonate lid for the top of the unit. This allows me to mount it to my vehicle when offroading or on the highway as branches might sweep the unit or debris may strike it resulting in damage to the sky-facing surface. I added four 65 pound magnets with M6 threaded posts and lock washers to the corners of the unit that allow me to mount it to any magnetic surface such as a vehicle roof or hood. The holes I used to mount the magnets can also be used to bolt the case to any other permanent or semipermanent mount point using M6 screws. The aluminum plate under the case is compatible with the mounts that come with the Starlink Mini so it can be placed on a pole or on the ground with the included kickstand without needing to be removed from the case.

I can also loop coated wire rope through the aluminum and roof rack and secure it with a pad lock to ensure that a branch strike won’t sweep the unit off the roof of my vehicle entirely while in motion. It also acts as a theft deterrent for when the vehicle is unattended. I have two other pieces of coated wire rope that are 2.5 feet short of the full length of the power and ethernet cables to make theft of the deployed unit more difficult and to provide strain relief if the cable is pulled or tripped on when deployed on the ground. If the coated wire rope is anchored to a secure point on the terminating end a trip or pull on the cable is less likely to result in the power and network cables from being ripped from the Starlink Mini or attached power supply and network equipment. A pulled network or power cable can damage other equipment such as batteries, network hardware, or laptops by pulling them over or off of elevated surfaces. The Starlink unit will hopefully be the part that is harmlessly dragged by the coated wire rope due to its relative light weight and the other end of the cable being secured. The choice of coated wire rope was made because of its relative strength and light weight. The coating on the wire rope prevents scratches on painted surfaces, allows it to slip past snag points more easily when pulled, and aids in corrosion resistance.

Magnet safety warning: The four 65 pound magnetic feet provide a total of 260lbs magnetic pulling force. These will unexpectedly stick to metallic objects, pick up sharp bits of metallic grit and filings that can damage paint, and they will stick to metallic objects in your pockets or in your environment while being carried. Be aware of your surroundings and exercise caution. The magnetic mounts can also cause the case to crush your fingers when the case sticks to a metallic surface. Don’t ask me how I know. It’s worth noting that with this configuration it can be difficult to remove the device from a surface that it’s stuck to. Exercise caution when using powerful magnets – especially when handling the unit, sticking it to a surface, or removing it from something it’s stuck to. When it comes loose it does so quickly and you can unintentionally throw the unit when it releases. Again, don’t ask me how I know.

Factors effecting operation and Internet bandwidth

Internet connection speeds vary due to a number of factors including the location of the unit and whether or not it has a clear view of the sky according to its specifications, the number of users connecting to the satellites the unit is also using, and wifi connection strength.

Full kit photos

The following photos show the full kit. Most components of this kit are fully optional. The only real requirement to run the unit is the 12-24v boost converter and associated connections along with an activated Starlink Mini and a clear view of the sky. The picture shows the 15m cables power and network cables that are zip tied together every 18 or so inches since they’re almost always used by me at the same time, but the ethernet end doesn’t have to be connected if there’s a reason not to. The 5m cables are separate because I can usually use the Starlink Mini’s wifi at close range and handling more cable isn’t usually necessary but I have the option to deploy the second cable if needed. This kit includes aftermarket water + dust resistant caps on the Starlink end of all cables to protect the cables from water and dust during deployment and breaking down in adverse conditions. The bottom row on the left shows the AC power adapter, pole mount, and kickstand when opened, but not attached to the bottom of the unit. The pole mount and kick stand snap into the underside near the network and power cable ports and the enclosure is fully compatible with the mounts as well.

Base configuration and added router / AREDN node

The following block diagrams depict a basic DC power setup with optional solar and battery charge controller as well as a configuration that connects the Starlink Mini to a router or AREDN node. Since AREDN nodes are functionally routers the connection principals are basically the same. See the above photo of the network in a box setup to see what the wiring looks like with a connected router.

Network in a box detail and photos

Exterior detail

The gallery below shows the exterior of the enclosure including ports and power controls. As noted previously this unit has port covers designed to protect the system from dust and moisture in transit. Once the ports are opened the unit is vulnerable to dust and water ingress so it requires some care after being deployed. The bottom of the unit has non-slip pads stuck to it because the enclosure’s bottom is slippery and there is a chance the screws that hold the boost converter could scratch surfaces so those non-slip pads also provide a degree of separation between the screws and the surface the unit is sitting on.

Power is provided by a single powerpole connector wired in a right-hand-red configuration, and power to various components is controlled by two pushbutton switches with LED power indicator rings. These physical switches are installed for easy control of loads and to prevent parasitic power draw when components shouldn’t be running.

Interior detail

The inside of the enclosure is shown below. The major components are a DC 12-24v boost converter, a Mikrotik hAP2 router running OpenWRT, an open source router firmware, switches, fuses, power wiring, and network connections. The unit includes a bag of spare 1A and 3A fuses that are stored inside the case for field repairs. The router is connected to the bottom of the enclosure using velcro so it can be removed as needed. All power connections in the case are also powerpole so in the event some component fails and needs to be replaced, bypassed, or reused elsewhere on the fly there’s minimal effort, tools, and wire splicing required to make changes.

Starlink Mini network engineering details

The Starlink unit is configured from the mobile app, but the base networking characteristics of the unit are as follows:

  • The Starlink Mini has a built-in router and dual-band wifi access point as well as a weather-hardened proprietary ethernet connector that supports provides 10/100/1000Mbps ethernet. This connector is a modified RJ45 jack wired using the EIA 568B standard. The official Starlink ethernet cable is outdoor rated Cat6 shielded twisted pair.
  • Starlink service provides native IPv4 and IPv6 capability.
  • There are 2.4 and 5Ghz wifi networks generated by the unit itself and these can be disabled or split into different SSID based on frequency if required for certain devices that have issues selecting the correct network.
  • The unit is configured to hand out IPv4 and IPv6 addresses using a local DHCP server runing on the Starlink Mini when it’s in the default operating mode (not in transparent bridge mode).
  • The default IPv4 address space is 192.168.1.0/24 and the built-in router uses 192.168.1.1 for its address and the default gateway.
  • I don’t think there is any web UI to configure the router on the Starlink Mini. This isn’t the case with other Starlink products I’ve worked on. The mobile app or Starlink website is required to configure the Starlink Mini.
  • Access to GPS location, telemetry data, and configuration endpoints are available via gRPC endpoints hosted on the Starlink Mini unit. These gRPC endpoints may also be the mechanism that the app uses to configure the device. See Sparky8512’s project for example code that interacts with the gRPC endpoints.
  • Unlike its predecessors it can’t be powered using power over ethernet. The DC power cable is required for the Starlink Mini to power up.
  • The unit can be set up in transparent bridge mode and any wired device connected to it is required to run its own DHCP client to get a WAN address from the upstream Starlink network. In order to switch back from transparent bridge mode the unit will have to be factory reset using the reset button on the under side of the unit.
  • All wired and wifi hosts connected to the unit are dropped onto the same subnet and can communicate with each other directly. There doesn’t appear to be any client separation inside the LAN.
  • The advertised WAN bandwidth is up to 100Mbps but I and others have seen speeds in excess of 100Mbps in certain locations and conditions.

Modified Ed Fong roll-up dual band J-pole antenna kit

Plastic bag containing a roll-up J-pole antenna and various adapters
Ed Fong roll-up J-pole kit

Howdy y’all! This is my second post for today. I wanted to explain my modified Ed Fong roll-up J-pole antenna and kit. This is the stock Ed Fong DBJ-2 (ham) dual band roll up antenna kit with a twist and an extended adapter pack. The antenna itself is pretty great, but I noticed while using it that there were a couple issues regarding setup. I had trouble hanging it in bushes and trees without carrying some extra materials like paracord. In addition to that sometimes the antenna would snag and you’d need to pull on the attached feed line to get it down which could damage the antenna by weakening connections between the feed line and ladder line or separating them entirely! The antenna comes with a wire tie attached to the end which could be used to hang it from a small object, but it didn’t work well because unless you were hanging it from a small metal object like a nail. Using a J-pole with metal objects near them and above the bottom of the antenna can detune them, and likely increasing the the SWR of your setup. Here’s how I solved both of those problems and set the kit up for a number of radios I and other friends have just in case we needed to hook something different up to it. It has come in handy already.

Unrolled j-pole antenna on a wooden table
Unrolled J-pole antenna

Solving the ease-of-hanging and snagging issues turned out to be the same solution – creative use of inexpensive paracord and heat shrink tubing. The ladder line that serves as the antenna’s radiator has convenient slots that one can weave paracord through. If you tie the paracord to the top of the antenna and weave the paracord through the slots in the antenna you can take a long end and throw it over a branch or tie it to some overhead structure, and also use it as a more rugged line to pull a stuck antenna down with. My initial setup didn’t have enough paracord on the bottom to pull the antenna down when it was up higher and stuck so I added the bright red line to give it more length to retrieve it from a higher location. The bright red length of paracord with a reflective 3M strip woven in also makes it more visible in low light or when you’re looking for the end with a flash light. We can now hang and retrieve our antenna easily and prevent damage to it if there’s a snag you need to apply more pulling force. Here are some more detailed pictures of how the paracord is tied on, woven, and secured by heat shrink tubing.

paracord tied to the antenna with the knot covered by heat shring tubing.
Paracord tied to the top of the antenna and the knot is covered by heat shrink tubing
View of the paracord woven through the antenna and secured by intermittently placed pieces of heat shrink tubing.
Paracord woven through the antenna and intermittently secured by heat shrink tubing
The bottom of the antenna secured with heat shrink tubing and the two sections of the recovery end are tied together

At this point we should probably talk abut the kit in its entirety. The modified antenna is obviously a critical component, but being able to connect the antenna to various radios is also very important. For that we’ll start with an exploded view of the kit.

Plastic bags, cables, adapters, and the cable arranged on a wooden table.
All components of the kit arranged on the table

This kit isn’t anything really fancy. It comes with the stock antenna and male-to-female extended BNC cable. The antenna itself has a BNC end, but not every radio has a BNC connector. I’ve used this antenna with a number of radios including dual-band Kenwood mobile radios, a Baofeng UV-5R, a Yaesu FT3DR, and a Yaesu FT-857D. The two of those radios have a PL-239/SO-239 connector, one has a male SMA, and one has a female SMA connection. This adapter kit allows an operator to connect any radio with a BNC, SMA male, SMA female, or a PL-239/SO-239 connector to the antenna… additionally you can connect one or more pieces of coax with PL-239/SO-239 cables as well. This can be handy if the antenna is up high or if the radio is far from the antenna. Here’s a list of the parts in the graphic top to bottom, left to right:

  • Medium sized heavy plastic zip-loc bag to hold the kit
  • Small heavy plastic zip-loc bag to hold small adapter parts
  • 6′ BNC male to female extension cable (originally came with the antenna)
  • 2x PL-239/SO-239 barrel connectors for both “changing the gender” (I’m not a fan of this terminology, but it’s what’s used broadly) of the BNC to PL-239/SO-239 adapter and for connecting two pieces of feed line together.
  • BNC to PL-239/SO-239 adapter
  • BNC to SMA male adapter with a wide-flanged connector (for my Yaesu HT)
  • BNC to SMA male adapter with a narrow spinning connector
  • BNC to SMA female adapter with a wide-flanged connector
  • BNC female barrel connector for use with the narrow spinning connector to adapt it to a male port
  • Rolled up J-pole antenna

With this set of adapters and cables we can connect this antenna to a wide variety of radios which might be handy in an emergency, or if you happen to forget another antenna. It’s also worth mentioning that this method could also be applied to other roll-up J-pole antennas, not just for ham bands.

Lab599 TX-500 QRP radio kit and friends

Ammo can, two solar panels with a cloth pouch stacked on top, and a carabiner holding assorted items together on a wood table.
HF QRP radio kit, solar charging kit, antenna hanging kit

Howdy all! This is a new post about my portable QRP radio kit and it supporting kits based around my Lab599 TX-500. Its a fairly self-contained kit but doesn’t have a couple key elements included in the actual box. It doesn’t have any equipment to hang the included trail friendly end-fed half wave dipole or battery charging equipment. I’ll include those elements in this post as well, but they don’t live in the HF radio kit itself. This will be a long post so strap in!

The QRP radio kit

Let’s start with how the HF radio kit is built out. It’s based around a small ammo can I got at a discount store. I wanted to have a fairly self-contained kit that was water resistant and durable and I also wanted the ability to charge and use the battery with the ammo can lid closed to protect against water and dust and ingress. This is by no means waterproof but I wanted to make sure it was at least splash and rain resistant since I do a lot of operating in the Pacific Northwest region of the US which is notorious for its rainy weather.

DC barrel jack with wire hanging off and a DC barrel connector with screw terminals on a wood table.
DC barrel connectors
DC barrel jack connected to a AC to DC charger on a wood table.
Testing charger and connector fit

The kit’s battery is a 4.5Ah Bioenno LiFePO4 pack. In order to make sure I can leave that battery in the kit I had to devise a way to connect it to an external charger through the can. After calling the folks at Bioenno I was able to determine the barrel connectors included on their batteries are 5.2 x 2.1mm connectors. The panel mount water resistant connectors I used have 18 gauge wire that supports a max of 10A at 12V DC. I was also able to track down a pack of screw-on terminal barrel connectors as well to connect the battery inside the ammo can. This setup also allows the battery can stay inside the case while the radio is being operated which is good for water and dust resistance. I recommend testing your connections before you drill for both polarity and appropriate voltage levels. In my case they worked fine so I proceeded…

Inside view of an ammo can with barrel connector jack mounted on the front and the DC barrel connector connected to the wire coming from the jack. The barrel connector end's wires are hot glued to the barrel connector. The ammo can is sitting on a wood table and some wires and connectors are sitting on the table in the background.
DC panel mount connector installed in case and insulated screw terminal connector installed

The first consideration in installing the connector is making sure the connector doesn’t interfere with the mechanism on the case that opens/closes it. After that you have to worry about the connector and wire on the inside of the case interfering with items in the case when it’s packed. I decided to place the connector in such a way that the radio laying on its side against the wall of the case would rest against the installed connector. Using a simple metal drill bit I was able to make a hole big enough for the panel mount connector just below the latch mechanism. I then removed any metal burs from the drilled hole and any turnings from the inside of the can to prevent rust, scratching, and short circuits. After installing the panel mount jack and the rubber water/dust cap I just screwed the positive and negative wires into the barrel connector that will hook up to the battery. To ensure no small metal parts caused a short I used hot glue to insulate and strengthen the connection points on the screw terminal barrel connector.

Interior view of an ammo can with a Bioenno battery mounted inside on a wooden table. There are also some wires and connectors sitting on the table in the background.
4.5Ah battery installed in the corner of the ammo can
Interior view of an ammo can with a battery affixed inside and connected to DC barrel connector. A powerpole connector is visible in someone's hand. A wooden table with various cables and connectors is visible in the background.
Battery connected to external DC barrel connector

The next step is adding the battery to the ammo can. I wanted the battery to be semi-permanently mounted in the box so I opted to use 2 x 4″ Velcro strips to secure the battery to two surfaces in the box. the link for those strips is to Amazon but similar strips are available at many stores and websites. The optimum position for the battery seemed to be in a corner where I could install Velcro strips on two of the faces of the corner making it removable without drilling more hols in the can or dealing with metal and glue. Fit testing your equipment is also important when deciding where the battery will be installed. I did that by attaching the loop side of the 2 x 4″ Velcro strips I cut to size to the battery but not removing the plastic that would go on the hook side of the Velcro intended for the inside of the can. Once I was satisfied with the location of the battery and my ability to pack the kit I removed the plastic backing from the hook side of the Velcro and stuck the battery in against the back and corner of the can. I was then able to connect the pass through electrical connection and make sure everything worked properly including polarization of the battery connection. Failing to test the polarity could result in damage to equipment or even potential issues that would compromise the battery. It should also be noted that the radio’s rubber feet make the fit against the battery very tight.

Ammo can and its lid as well as several cables and devices are laid out on a wooden table.
Kit contents + Bioenno 2A AC-DC charger

Here’s the contents of the kit. Left to right, top to bottom.

  • Ammo can body with battery and pass through DC cable installed.
  • Plastic bag to hold small adapters and connectors.
  • Ammo can lid
  • Bioenno 2A AC to DC charger for LiFePO4 batteries
  • Lab599 TX-500 speaker mic and Raspberry Pi 4 dedicated to the kit
  • West Mountain Radio PWRnode (4-way Anderson power pole connector in a right-hand-red configuration)
  • Lab599 TX-500 power connector w/Anderson powerpole connector installed in right hand red configuration
  • 2x Powerwerx USBbuddies (12v to 5v USB power converter)
  • 2x 25′ RG-174U cables w/BNC ends (multiple segments of shorter cable allow me to make the shortest connection possible for a given deployment)
  • 15′ RG-174U cable w/BNC ends
  • DIY REM/DATA GX12-7 connector for the TX-500 with a 1/8″ TRRS end connected to a Millso TRRS USB sound card
  • TX-500 USB CAT cable (stock cable that comes w/radio)
  • Par EndFedz trail-friendly EFT-10/20/40m antenna on winder w/BNC connector. This has some red paracord loops attached at each end of the antenna for easier connection to support lines and for visibility.
  • Powerwerx USBbuddy w/spliced-on USB-C connector for the dedicated Raspberry Pi 4. The splice minimizes cable length for less voltage drop and excess cable.
  • TX-500 radio w/3D printed GX-12 series connector dust caps caps installed
  • 2x DIY 5.2 x 2.1mm barrel connector to Anderson Powerpole adapter cables
  • 2x 6″ USB A to MicroUSB cables to connect devices for charging
  • 2x 6″ USB A to USB C cables to connect devices for charging
  • TX-500 morse code (CW) key connection cable (GX12-2 to 1/8″ TS)
  • W2ENY headset adapter wired for a dynamic mic. (The included adapter with the TX-500 was defective from the start in such a way that I’d have to significantly shorten the cable, and I also wanted to use a different PTT button and my existing Heil headset with a dynamic mic element)
  • 2x BNC barrel connectors to connect feed line segments together
  • 1/4″ to 1/8″ TS adapter for PTT switches
  • 1/8″ to 1/8″ TRS to TS adapter for ear buds connected to the speaker mic
  • 90 degree male to female PL-239/SO-239 connector (convenience)
  • BNC to PL-230/SO-239 male adapter (for connecting to most of my other antennas)
  • DIY 1/8″ TS PTT button made from spare parts I had lying around

Putting the kit together layer-by-layer is pretty easy. The below photos illustrate how the kit is packed in 3 layers – bottom to top.

Equipment packed into an ammo can.
The first layer at the bottom of the kit – battery, radio, Raspberry Pi, RPi USB C power converter, adpater/connector bag, radio power cable, Powerpole to barrel connector adapters, TX-500 data and CAT cable.
Equipment packed into an ammo can.
The middle layer of the packed kit – 2x USB buddies, all coiled feed line
Equipment packed into an ammo can.
The top layer of the packed kit – Speaker mic and its cable coiled around the trail-friendly antenna

Solar power kit

Now that we’ve covered the kit contents let’s talk field charging with solar power! The solar charging system I typically bring with this radio uses one or two 20W Goal Zero Nomad 20 folding solar panels. Those attach to a Buddipole PowerMini charge controller and power meter. Much of this solar charging kit is composed of cables, but it’s designed to be used with a number of my radios, batteries, portable lights, and USB device chargers.

Two small folded solar panels, one facing up, and the other facing down and a cloth pouch sitting on a wooden table.
Two solar panels and the charger kit

Depending on the deployment I may bring one or both solar panels with the charger kit, or sometimes I’ll just bring the charger kit for power metering to understand how much I’ve drawn my batteries down and at what rate I’m using power. You can check the Buddipole PowerMini’s product page to learn more about it and ways it can be used. In some cases with good sunlight a single 20W panel can provide around 1A (typical max power I’ve gotten from the panels), but in overcast conditions I might use both panels to get 1A peak power. It also might be a good idea to bring both panels to charge at about 2A. It’s especially nice if I expect to charge a phone/tablet and run a radio with a Raspberry Pi if I’m using data modes.

In the above photo you can see the two Goal Zero Nomand 20 solar panels. One of them is staged to show the top view of the panel and the other the bottom view. Each panel has a kick stand to hold itself up at various angles on the ground, cable with an 8mm plug, a USB charging port, and holes in the corners of the panel to suspend them. The Nomad 20s fold open to reveal three solar cells.

An opened cloth pouch open revealing devices and cables secured to the inside with paracord and elastic bands.
Charger kit opened
An empty cloth pouch, a velcro-backed sleeve, various cables and devices laid out on a wooden table.
Disassembled charger kit

The solar charger kit consists of a Condor MOLLE compatible pouch that has a detachable main pocket which allows you to install and remove the pocket without disconnecting the MOLLE part from the webbing, and also has a loop for easily suspending hanging the kit from something. The kit contains the following items:

  • Condor MOLLE compatible pouch w/ paracord loops to hold and suspend the Buddipole PowerMini
  • Condor MOLLE compatible pouch attachment platform. This comes as a single unit with the pouch listed above.
  • West Mountain Radio PWRNode (4-way Anderson Powerpole connector)
  • DIY MC-4 to Anderson Powerpole connector (for a 100W solar panel not pictured here)
  • BuddiPole PowerMini
  • DIY 2.5″ Anderson Powerpole jumper cable w/10 GA wire (rated for 30A @ 12V DC)
  • DIY 6″ Anderson Powerpole jumper cable w/10 GA wire (rated for 30A @ 12V DC)
  • DIY 4″ Anderson Powerpole to Goal Zero male 8mm connector pigtail.
  • DIY 4″ dual Goal Zero female 8mm plug to Anderson Powerpole pigtail. This allows the two Goal Zero solar panels to be used simultaneously.
  • DIY 3′ Female Goal Zero 8mm to Anderson Powerpole cable.

You’ll probably notice there are a lot of seemingly redundant connectors and pigtails in this kit. There’s a reason I carry so many adapters around, and that is to make sure I can run as little cable as possible to achieve connections between system components. Being able to use shorter cables help limit voltage drop, but having the option to use a longer cable to connect the solar panels might mean I can stay in the shade and keep my solar panels in the sun. The short Anderson Powerpole jumpers included in the kit can help me connect to the battery or connect a PWRNode to the PowerMini. The Anderson Powerpole connectors on the side of the PowerMini don’t allow you to connect the PWRNode directly to it, and even if they did you’d lose two of the four connections on the PowerMini side of the PWRNode. In most cases this kit powers the entire radio doing phone and data, a phone and tablet, etc. Most of the time the equipment barely uses the battery while operating during the day and I have a full battery to use at night for the radio and lights.

Antenna hanging kit

Two hanks of paracord, a throwing weight, and tent stakes mounted to a carabiner sitting on a wooden table.
Antenna hanging kit

Last but not least we have the antenna hanging kit. It’s great to have a radio and a way to power it, but if you can’t get your antenna where it needs to be it’s all for nothing. This part of the kit rounds off the portable radio station. It’s designed to work with a number of wire antennas I have – a Par EndFedz 6m antenna, the Chameleon EMCOMM III Portable, and the Par EndFedz EFT-10/20/40 trail friendly antenna that lives in the HF radio kit. In the case of the trail friendly antenna we require two points of suspension for horizontal dipole operation – the end of the wire antenna and the transformer component. Being in Oregon and setting up my radio station in the region quite a bit I frequently rely on trees as antenna supports, and thus also pack an arborist’s weight as part of my equipment to assist in hanging the line. It adds a lot of weight but is definitely worth it. Using rocks and other tree branches works but definitely comes with snagging risks and the possibility your line will come off of the wight you’re using to get the line up… especially when it comes to rocks. I carry 4 aluminum tent stakes with paracord loops and quick links for attaching line. Those are bound during transport by a piece of paracord I tied together to make the clanking of the tent stakes go away and to keep them from flopping everywhere. There are four aluminum tent stakes in the kit because I might want to anchor my Chameleon EMCOMM III in 3 or 4 spots depending on antenna configuration. I have two 75′ high visibility paracord hanks wound around Chameleon wire winders that can support two ends of antennas that are in a horizontal dipole configuration. Each hank of paracord has a quick link attached for connecting to the ends of an antenna or suspension point, and the arborist’s weight for deployment. I can leave one of the paracord hanks behind if I want to set an antenna up in a configuration that only requires one suspension point like an inverted V. I added a small loop of paracord to the Chameleon wire winders in one of the corner holes to take the weight of the assembly off of the elastic band that wraps the paracord when the hank is being stored or transported. The locking carabiner is used to hold everything together, clip the kit onto something like a backpack, or hang it from a pocket during setup. The specific carabiner I’m using is probably overkill but I had it laying around so I used it. There’s also another loop of paracord attached to the carabiner which acts as a more comfortable carrying handle and for storage by hanging from a door knob.

Antenna hanging equipment laid out on a wooden table.
The antenna hanger kit broken down to (most) of its individual components

Kit parts list below:

  • Notch 14oz arborist’s weight
  • Camp locking carabiner
  • Black paracord cut small into smaller pieces for use as a handle, 2x wire winder strain relief loops, and a keeper for the tent stakes (don’t ask me how I figured out how to tie that. I can’t really tell you how I did it except that I did a lot of experimentation.
  • 2x Chameleon wire winders
  • 6x threaded quick links (4 on stakes, 2 on the 75′ paracord)
  • 2x high visibility 75 ft paracord hanks w/ 3M high visibility strip included for working on the antenna suspension at night
Detailed view of tent stakes secured in a paracord sleeve.
Tent stake holder assembled

Note the paracord attachment point run through the quick links that make sure they don’t come out of the holder or make a bunch of noise. Both loops of black paracord go through the carabiner, but if you remove the attachment point with the quick links from the carabiner it’s easy to just pull the quick links off.

Chameleon wire winder with bright yellow paracord wrapped around it and secured to the wire winder by an elastic band. The paracord and wire winder are connected together with a quick link.
75′ high vis paracord wrapped around Chameleon wire winder and set up for transport

This is a more detailed view of one of the two paracord hanks. Both are set up the same way. The paracord is wrapped around the Chameleon wire winder and is held on the winder using the built-in elastic band which is wrapped around the paracord and secured with the pictured notches. The quick link is attached to the throw/attachment end of the paracord, and the quick link is also attached to the small black loop of paracord to take strain off of the elastic band during transport. This design uses the quick link, black paracord loop, and plastic wire winder plate to take the weight of the assembly when attached to the carabiner.

Connecting it all

While this isn’t necessarily directly related to the composition of the kits I described above I decided to diagram out how the station is wired up for my typical use and add this section after I wrote the original post. You’ll note that some components are only used in data operations, and some are only hooked up when needed. For example, I won’t need the light unless it’s dark, I won’t want to use the Raspberry Pi unless I’m doing data comms or using the documentation server. In addition I won’t have any of the USB buddies that I don’t need hooked up at any time because they draw power, and unless I want that power to go to something I just won’t use it. If I’m deploying at night and don’t expect to stick around until morning I won’t deploy the solar panels and add the hassle of managing those additional cables and connections. In any case, this is basically how it’s all wired up for my typical deployments. Sometimes I’ll use different components such as a 100W solar panel instead of the 20s, or add a travel router and a USB buddy to the data deployment depending on my situation and available power/battery.

Diagram showing interconnection of components with various colored lines.

Wrapping it up

So, this is the kits! I don’t always use the trail-friendly antenna with this radio, but it’s what I include in the kit by default. I also use a Samsung Galaxy tablet and sometimes a customized travel wireless router in conjunction with this kit when I do data mode work to interact with the Raspberry Pi 4 in this kit and / or one of the other ones I have set up, but that’s a whole other post.